INTERACTION EFFECT OF APIS TRIGONA HONEY, ETHANOLIC EXTRACTS KEMUNING (MURRAYA PANICULATE), YAKON (SMALLANTHUS SONCHIFOLIUS) AND THEIR COMBINATION AGAINST STAPHYLOCOCCUS AUREUS INFECTIONS

Authors

  • SRI AGUNG FITRI KUSUMA Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang-45363, West Java, Indonesia https://orcid.org/0000-0001-8342-0112
  • IRMA ERIKA HERAWATI Department of Pharmacy, Indonesian School of Pharmacy, Bandung-40266, West Java, Indonesia https://orcid.org/0000-0002-6129-0051
  • DANNI RAMDHANI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang-45363, West Java, Indonesia https://orcid.org/0000-0001-9854-5735
  • ALYA RISNAND Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Al-Ghifari University, Bandung-40293, West Java, Indonesia

DOI:

https://doi.org/10.22159/ijap.2023.v15s2.17

Keywords:

Murraya paniculate, Smallanthus sonchifolius, Apis trigona, Interaction, Additive, Antagonistic, Staphylococcus aureus

Abstract

Objective: This study was investigated the antibacterial interaction of Murraya paniculate extract, Smallanthus sonchifolius extract, Apis trigona honey and their combinations for their interaction effect against Staphylococcus aureus ATCC 29213.

Methods: All extracts and honey were evaluated for antibacterial interaction effects both alone and in combination. The disk diffusion method was employed with clindamycin phosphate as the standard antibiotic. The minimum inhibitory concentration (MIC) of the most potent extract was determined using microdilution assays and performed in line with CLSI guidelines.

Results: Among all, S. sonchifolius extract provided the most effective inhibitory activity in higher inhibition than clindamycin phosphate with the range MIC value of 12.5-25% w/v. However, significant different interactions (synergistic, additive and antagonistic) were observed between honey and plant crude extracts. The S. sonchifolius extract displayed additive interaction with M. paniculate extract but antagonistic with A. trigona honey. The antagonistic interaction also produced when M. paniculate extract combined with A. trigona honey. Consequently, their total combination of all tested sample produced an additive interaction.

Conclusion: Thus, we concluded that their combination was ineffective to be used as the antibacterial cocktails against S. aureus infections.

Downloads

Download data is not yet available.

References

Kluytmans J, Van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997;10(3):505-20. doi: 10.1128/CMR.10.3.505, PMID 9227864.

Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med. 2001;344(1):11-6. doi: 10.1056/NEJM200101043440102, PMID 11136954.

Hamdan Partida A, Sainz Espunes T, Bustos Martinez J. Characterization and persistence of Staphylococcus aureus Strains isolated from the anterior nares and throats of healthy carriers in a mexican community. J Clin Microbiol. 2010;48(5):1701-5. doi: 10.1128/JCM.01929-09, PMID 20335416.

Nilsson P, Ripa T. Staphylococcus aureus throat colonization is more frequent than colonization in the anterior nares. J Clin Microbiol. 2006;44(9):3334-9. doi: 10.1128/JCM.00880-06, PMID 16954269.

Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA. Risk and outcome of nosocomial staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet. 2004;364(9435):703-5. doi: 10.1016/S0140-6736(04)16897-9, PMID 15325835.

Harbottle H, Thakur S, Zhao S, White DG. Genetics of antimicrobial resistance. Anim Biotechnol. 2006;17(2):111-24. doi: 10.1080/10495390600957092, PMID 17127523.

Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111-29. doi: 10.1038/nrd4510, PMID 25614221.

Whitea RL, Kays MB, Friedrich LV, Del-Bene VED. Impact of different statistical methodologies on the evaluation of the in vitro MICs for bacteroides fragilis of selected cephalosporins and cephamycins. J Antimicrob Chemother. 1993;31(1):57-64. doi: 10.1093/jac/31.1.57.

Taylor PW, Stapleton PD, Paul Luzio J. New ways to treat bacterial infections. Drug Discov Today. 2002;7(21):1086-91. doi: 10.1016/s1359-6446(02)02498-4, PMID 12546840.

Zapun A, Contreras Martel CC, Vernet T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev. 2008;32(2):361-85. doi: 10.1111/j.1574-6976.2007.00095.x, PMID 18248419.

Cottarel G, Wierzbowski J. Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol. 2007;25(12):547-55. doi: 10.1016/j.tibtech.2007.09.004, PMID 17997179.

Acar JF. Antibiotic synergy and antagonism. Med Clin North Am. 2000;84(6):1391-406. doi: 10.1016/s0025-7125(05)70294-7, PMID 11155849.

Ansari M, Larijani K, Saber Tehrani M. Antibacterial activity of Lippa citriodora Herb Essence against MRSA Staphylococcus aureus. Afr J Microbiol Res. 2012;6(1):16-9.

Hendry ER, Worthington T, Conway BR, Lambert PA. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother. 2009;64(6):1219-25. doi: 10.1093/jac/dkp362, PMID 19837714.

LaPlante KL. In vitro activity of lysostaphin, Mupirocin, and tea tree oil against clinical methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2007;57(4):413-8. doi: 10.1016/j.diagmicrobio.2006.09.007, PMID 17141452.

Gunardi S. Kartika D. Profil kromatogram dan aktivitas antibakteri ekstrak etanol daun kemuning (Murraya paniculata L. Jack) terhadap bakteri escherichia coli secara. In Vitro. 2007.

Iqlima D, Ardianingsih P, Wibowo MA. Aktivitas antibakteri isolat bakteri endofit B2D dari batang tanaman yakon (Smallanthus sonchifolius poepp. H Robb) terhadap bakteri Staphylococcus aureus dan Salmonella thypimurium. JKK. 2017;7(1):36-43.

Sabir A, Antibakteri A. Flavonoid propolis trigona sp terhadap bakteri Streptococcus mutans (in vitro). maj ked gigi. Dent J. 2005;38(3):135-41.

Amina R, Aliero B, Gumi A. Phytochemical screening and oil yield of a potential Herb, camel grass (Cymbopogon schoenanthus Spreng.). Cent Eur J Exp Sci. 2013;2(3):15-9.

Sajjad W, Sohail M, Ali B, Haq A, Din G, Hayat M. Antibacterial activity of Punica granatum peel extract. Mycopathol. 2015;13(2):105-11.

CLSI. M07-A9-methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 9th ed. Vol. 2. Clinical and Laboratory Standards Institute; 2012. p. 32.

Cote IM, Darling ES, Brown CJ. Interactions among ecosystem stressors and their importance in conservation. Proc R Soc Lond B. 2016;283:(20152592):1-9.

Gautam MK, Gangwar M, Nath G, Rao CV, Goel RK. In vitro antibacterial activity on human pathogens and total phenolic, flavonoid contents of Murraya paniculata Linn. Leaves. Asian Pac J Trop Biomed. 2012;2(3):S1660-3. doi: 10.1016/S2221-1691(12)60472-9.

Lin F, Hasegawa M, Kodama O. Purification and identification of antimicrobial Sesquiterpene Lactones from Yacon (Smallanthus sonchifolius) leaves. Biosci Biotechnol Biochem. 2003;67(10):2154-9. doi: 10.1271/bbb.67.2154, PMID 14586103.

Ohyama T, Ito O, Yasuyoshi S, Ikarashi T, Minamisawa K, Kubota M. Composition of storage carbohydrate in tubers of yacon (Polymnia sonchifolia). Soil Sci Plant Nutr. 1990;36(1):167-71. doi: 10.1080/00380768.1990.10415724.

Hong SS, Lee SA, Han XH, Lee MH, Hwang JS, Park JS. Melampolides from the leaves of Smallanthus sonchifolius and their inhibitory activity of LPS-induced nitric oxide production. Chem Pharm Bull (Tokyo). 2008;56(2):199-202. doi: 10.1248/cpb.56.199, PMID 18239309.

Choi JG, Kang OH, Lee YS, Oh YC, Chae HS, Obiang Obounou B. Antimicrobial activity of the constituents of Smallanthus sonchifolius leaves against methicillin-resistant staphylococcus aureus. Eur Rev Med Pharmacol Sci. 2010;14(12):1005-9, PMID 21375130.

Rachana S, Tarun A, Rinki R, Neha A, Meghna R. Comparative Analysis of antibacterial activity of Jatropha curcas fruit parts. J Pharm Biomed Sci. 2012;15(15):1-4.

Yadav R, Agarwala M. Phytochemical analysis of some medicinal plants. J Phytol. 2011;3(12):10-4.

Abdelgadir HA, Van Staden J. Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review. S Afr J Bot. 2013;88:204-18. doi: 10.1016/j.sajb.2013.07.021.

Chandrasekaran M, Kannathasan K, Venkatesalu V. Antimicrobial activity of fatty acid methyl esters of some members of chenopodiaceae. Z Naturforsch C J Biosci. 2008;63(5-6):331-6. doi: 10.1515/znc-2008-5-604, PMID 18669016.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi: 10.1017/jns.2016.41, PMID 28620474.

Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci. 2018;13(1):12-23. doi: 10.1016/j.ajps.2017.08.004, PMID 32104374.

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal. 2013;2013:162750. doi: 10.1155/2013/162750, PMID 24470791.

Juca MM, Cysne Filho FMS, de Almeida JC, Mesquita DDS, Barriga JRM, Dias KCF. Flavonoids: biological activities and therapeutic potential. Nat Prod Res. 2020;34(5):692-705. doi: 10.1080/14786419.2018.1493588, PMID 30445839.

Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2015;22(1):132-49. doi: 10.2174/0929867321666140916113443, PMID 25245513.

Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343-56. doi: 10.1016/j.ijantimicag.2005.09.002, PMID 16323269.

Wu T, Zang X, He M, Pan S, Xu X. Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. J Agric Food Chem. 2013;61(34):8185-90. doi: 10.1021/jf402222v, PMID 23926942.

Górniak I, Bartoszewski R, Kroliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 2019;18(1):241-72. doi: 10.1007/s11101-018-9591-z.

Donadio G, Mensitieri F, Santoro V, Parisi V, Bellone ML, De Tommasi N. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics. 2021;13(5):1-23. doi: 10.3390/pharmaceutics13050660, PMID 34062983.

Khan MI, Ahhmed A, Shin JH, Baek JS, Kim MY, Kim JD. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram-positive and gram-negative bacteria, a comprehensive study in vitro and in vivo. Evid Based Complement Alternat Med. 2018;2018:3486106. doi: 10.1155/2018/3486106, PMID 30598684.

Winter WP. American society of hematology. 36th annual meeting. Dec 2-6, 1994, Nashville, Tennessee. Abstracts Blood. 1994;84(10) Suppl 1:1-743, PMID 7949116.

Romo MR, Perez Martınez D, Ferrer CC. Innate immunity in vertebrates: an overview. Eur J Immunol. 2016;148:125-39.

Arabski MS, Wasik S, Dworecki K, Kaca W. Laser interferometric and cultivation methods for measurement of colistin/ampicilin and saponin interactions with smooth and rough of Proteus mirabilis lipopolysaccharides and cells. J Microbiol Methods. 2009;77(2):178-83. doi: 10.1016/j.mimet.2009.01.020, PMID 19318050.

Li N, Tan SN, Cui J, Guo N, Wang W, Zu YG. PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane. J Antibiot (Tokyo). 2014;67(10):689-96. doi: 10.1038/ja.2014.49, PMID 24894184.

Larghi EL, Bracca AB, Arroyo Aguilar AA, Heredia DA, Pergomet JL, Simonetti SO. Neocryptolepine: a promising indoloisoquinoline alkaloid with interesting biological activity. Evaluation of the drug and its most relevant analogs. Curr Top Med Chem. 2015;15(17):1683-707. doi: 10.2174/1568026615666150427113937, PMID 25915612.

Berthoud HR. Synergy: a concept in search of a definition. Endocrinology. 2013;154(11):3974-7. doi: 10.1210/en.2013-1420, PMID 24002031.

Geary N. Understanding synergy. Am J Physiol Endocrinol Metab. 2013;304(3):E237-53. doi: 10.1152/ajpendo.00308.2012, PMID 23211518.

Greco WR, Faessel H, Levasseur L. The search for cytotoxic synergy between anticancer agents: a case of dorothy and the ruby slippers? J Natl Cancer Inst. 1996;88(11):699-700. doi: 10.1093/jnci/88.11.699, PMID 8637018.

Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect. 2015;3(3):e00149. doi: 10.1002/prp2.149, PMID 26171228.

Roell KR, Reif DM, Motsinger Reif AA. An introduction to terminology and methodology of chemical synergy perspectives from across disciplines. Front Pharmacol. 2017;8(158):158. doi: 10.3389/fphar.2017.00158, PMID 28473769.

Published

18-12-2023

How to Cite

KUSUMA, S. A. F., HERAWATI, I. E., RAMDHANI, D., & RISNAND, A. (2023). INTERACTION EFFECT OF APIS TRIGONA HONEY, ETHANOLIC EXTRACTS KEMUNING (MURRAYA PANICULATE), YAKON (SMALLANTHUS SONCHIFOLIUS) AND THEIR COMBINATION AGAINST STAPHYLOCOCCUS AUREUS INFECTIONS. International Journal of Applied Pharmaceutics, 15(2), 91–95. https://doi.org/10.22159/ijap.2023.v15s2.17

Issue

Section

Original Article(s)

Most read articles by the same author(s)

<< < 1 2