SYNERGY OF SCIENCE AND TRADITION: A NANOTECHNOLOGY-DRIVEN REVOLUTION IN NATURAL MEDICINE

Authors

  • ANITHA MARIMUTHU Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris. Tamilnadu, India https://orcid.org/0009-0000-2175-087X
  • RAAGUL SEENIVASAN Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris. Tamilnadu, India. Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-3763-3528
  • JEY KUMAR PACHIYAPPAN Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris. Tamilnadu, India
  • IMRANKHAN NIZAM Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris. Tamilnadu, India https://orcid.org/0000-0003-0483-7927
  • GNK GANESH Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris. Tamilnadu, India

DOI:

https://doi.org/10.22159/ijap.2024v16i6.50767

Keywords:

Formulation, Herbals, Nanomedicine, Permeability, Phytoconstituents, Solubility

Abstract

Usage of plants to treat various ailments is part and parcel of our tradition and culture. Most marketed formulations are directly or indirectly derived from plants only. Herbal plants are potential therapeutic agents against most life-threatening diseases. Despite these advantages, herbal medicines fail clinical trials due to their low aqueous solubility and low bioavailability. To get the maximum benefits out of herbal plants, we must incorporate medicinal herbs in nanotechnology. The nanotechnology approach not only protects herbal medicines in the body but also aids in delivering the same to the site of action with sustained release. The formulation of herbal nanomedicines will be a breakthrough in treating life-threatening diseases and will also aid in the delivery of drugs that conventionally cannot cross the Blood-Brain Barrier (BBB). The review summarizes the recent advancements of the various nanocarriers loaded with herbal extracts/Phytoconstituents developed to treat various diseases, especially cancer. It also highlights the regulatory requirements for herbal nanomedicines.

Downloads

Download data is not yet available.

References

WHO. Traditional medicine; 2023.

Ansari SH, Islam F, Sameem M. Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res. 2012;3(3):142-6. doi: 10.4103/2231-4040.101006, PMID 23057000.

N Srinivasan S. Recent advances in herbal nano formulation: a systematic review. Asian J Biol Life Sci. 2023;12(1):22-32. doi: 10.5530/ajbls.2023.12.4.

SU XZ, Miller LH. The discovery of artemisinin and the nobel prize in physiology or medicine. Sci China Life Sci. 2015;58(11):1175-9. doi: 10.1007/s11427-015-4948-7, PMID 26481135.

Gao X, Guo L, LI J, Thu HE, Hussain Z. Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metastasis: critical appraisal of newer developments and challenges to clinical transition. J Control Release. 2018 Dec 28;292:29-57. doi: 10.1016/j.jconrel.2018.10.024, PMID 30359665.

Wang Y, Zhang X, Wan K, Zhou N, Wei G, SU Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function specific applications. J Nanobiotechnology. 2021;19(1):253. doi: 10.1186/s12951-021-00999-x, PMID 34425823.

Anand U, Jacobo Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites. 2019;9(11):258. doi: 10.3390/metabo9110258, PMID 31683833.

Sandhiya V, Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Future J Pharm Sci. 2020;6(1):1-16. doi: 10.1186/s43094-020-00050-0.

Ahmed HM, Nabavi S, Behzad S. Herbal drugs and natural products in the light of nanotechnology and nanomedicine for developing drug formulations. Mini Rev Med Chem. 2021;21(3):302-13. doi: 10.2174/1389557520666200916143240, PMID 32938347.

Zhang J, HU K, DI L, Wang P, Liu Z, Zhang J. Traditional herbal medicine and nanomedicine: converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev. 2021;178:113964. doi: 10.1016/j.addr.2021.113964, PMID 34499982.

Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: recent advancements challenges opportunities and regulatory overview. Phytomedicine. 2022 Feb;96:153890. doi: 10.1016/j.phymed.2021.153890, PMID 35026510.

Murjani BO, Kadu PS, Bansod M, Vaidya SS, Yadav MD. Carbon nanotubes in biomedical applications: current status promises and challenges. Carbon Lett. 2022;32(5):1207-26. doi: 10.1007/s42823-022-00364-4.

Shoukat R, Khan MI. Carbon nanotubes: a review on properties synthesis methods and applications in micro and nanotechnology. Microsyst Technol. 2021;27(12):4183-92. doi: 10.1007/s00542-021-05211-6.

Singh N, Sachdev A, Gopinath P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J Nanosci Nanotechnol. 2018;18(3):1534-41. doi: 10.1166/jnn.2018.14222, PMID 29448627.

Bakhsh S. Fullerene carbon nanotubes and graphene: a comprehend sive review. Karbala Int J Mod Sci. 2023;9(3):1. doi: 10.33640/2405-609X.3301.

Moreira AF. Nanomaterials in drug delivery applications. Nanomaterials (Basel). 2022 Oct 12;12(20):3565. doi: 10.3390/nano12203565, PMID 36296755.

Zhang H, Hou L, Jiao X, JI Y, Zhu X, Zhang Z. Transferrin mediated fullerenes nanoparticles as Fe(2+) dependent drug vehicles for synergistic anti-tumor efficacy. Biomaterials. 2015 Jan;37:353-66. doi: 10.1016/j.biomaterials.2014.10.031, PMID 25453964.

Najafi F, Salami Kalajahi M, Roghani Mamaqani H. A review on synthesis and applications of dendrimers. J Iran Chem Soc. 2021;18(3):503-17. doi: 10.1007/s13738-020-02053-3.

Razmshoar P, Shakoorjavan S, Akbari S. Surface engineered dendrimers in targeting and delivery of drugs. Dendrimer Based Nanotherapeutics. 2021;203-23. doi: 10.1016/B978-0-12-821250-9.00015-9.

GE P, Niu B, WU Y, XU W, LI M, Sun H. Enhanced cancer therapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety. Chem Eng J. 2020;383:123228. doi: 10.1016/j.cej.2019.123228.

Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10(45):26777-91. doi: 10.1039/d0ra03491f, PMID 35515778.

Mohammed HA, Khan RA, Singh V, Yusuf M, Akhtar N, Sulaiman GM. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high incidence cancers and other diseases: roles of preparation methods lipid composition transitional stability and release profiles in nanocarriers development. Nanotechnol Rev. 2023;12(1):20220517. doi: 10.1515/ntrev-2022-0517.

Shi F, Zhao JH, Liu Y, Wang Z, Zhang YT, Feng NP. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomedicine. 2012;7:2033-43. doi: 10.2147/IJN.S30085, PMID 22619540.

Fonseca Santos B, Silva PB, Rigon RB, Sato MR, Chorilli M. Formulating SLN and NLC as innovative drug delivery systems for non-invasive routes of drug administration. Curr Med Chem. 2020;27(22):3623-56. doi: 10.2174/0929867326666190624155938, PMID 31232233.

Soni K, Rizwanullah MD, Kohli K. Development and optimization of sulforaphane loaded nanostructured lipid carriers by the box-behnken design for improved oral efficacy against cancer: in vitro ex vivo and in vivo assessments. Artif Cells Nanomed Biotechnol. 2018;46 Suppl 1:15-31. doi: 10.1080/21691401.2017.1408124, PMID 29183147.

Farooque F, Wasi M, Mughees MM. Liposomes as drug delivery system: an updated review. J Drug Delivery Ther. 2021;11(5-S):149-58. doi: 10.22270/jddt.v11i5-S.5063.

Jagwani S, Jalalpure S, Dhamecha D, Jadhav K, Bohara R. Pharmacokinetic and pharmacodynamic evaluation of resveratrol loaded cationic liposomes for targeting hepatocellular carcinoma. ACS Biomater Sci Eng. 2020;6(9):4969-84. doi: 10.1021/acsbiomaterials.0c00429, PMID 33455290.

Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S. Phytosomes as innovative delivery systems for phytochemicals: a comprehensive review of literature. Int J Nanomedicine. 2021;16:6983-7022. doi: 10.2147/IJN.S318416, PMID 34703224.

Kumar D, Vats N, Saroha K, Rana AC. Phytosomes as emerging nanotechnology for herbal drug delivery. J Sustain Agric Reviews 43: Pharmaceutical Technology for Natural Products Delivery Vol 1 Fundamentals and Applications. 2020;43:217-37.

Alhakamy NA, A Fahmy U, Badr Eldin SM, Ahmed OA, Asfour HZ, Aldawsari HM. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics. 2020;12(4):346. doi: 10.3390/pharmaceutics12040346, PMID 32290412.

Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication characterization pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019 Nov;144:18-39. doi: 10.1016/j.ejpb.2019.08.015, PMID 31446046.

Makeshwar KB, Wasankar SR. Niosome: a novel drug delivery system. Asian J Pharm Res. 2013;3(1):16-20.

Barani M, Mirzaei M, Torkzadeh Mahani M, Adeli Sardou M. Evaluation of carum loaded niosomes on breast cancer cells:physicochemical properties in vitro cytotoxicity flow cytometric dna fragmentation and cell migration assay. Sci Rep. 2019;9(1):7139. doi: 10.1038/s41598-019-43755-w, PMID 31073144.

Mohanty D, Mounika A, Bakshi V, Akiful Haque M, Keshari Sahoo C. Ethosomes: a novel approach for transdermal drug delivery. Int J Chem Tech Res. 2018;11(8):219-26. doi: 10.20902/IJCTR.2018.110826.

Garg U, Jain K. Dermal and transdermal drug delivery through vesicles and particles: preparation and applications. Adv Pharm Bull. 2022;12(1):45-57. doi: 10.34172/apb.2022.006, PMID 35517881.

Chen Jin Guang. Preparation of curcumin ethosomes. Afr J Pharm Pharmacol. 2013;7(31):2246-51. doi: 10.5897/AJPP12.435.

Terkula Iber B, Azman Kasan N, Torsabo D, Wese Omuwa J. A review of various sources of chitin and chitosan in nature. J Renew Mater. 2022;10(4):1097-123. doi: 10.32604/jrm.2022.018142.

Rajalekshmy GP, Devi LL, Joseph J, Rekha MR. An overview on the potential biomedical applications of polysaccharides. Funct Polysaccharides Biomed Appl. 2019:33-94. doi: 10.1016/B978-0-08-102555-0.00002-9.

Suksaeree J, Monton C, Madaka F, Chusut T, Saingam W, Pichayakorn W. Formulation physicochemical characterization and in vitro study of chitosan/HPMC blends based herbal blended patches. AAPS Pharm Sci Tech. 2015;16(1):171-81. doi: 10.1208/s12249-014-0216-6, PMID 25233803.

Lin X, Tsao CT, Kyomoto M, Zhang M. Injectable natural polymer hydrogels for treatment of knee osteoarthritis. Adv Healthc Mater. 2022;11(9):e2101479. doi: 10.1002/adhm.202101479, PMID 34535978.

Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev. 2018;127:167-84. doi: 10.1016/j.addr.2018.03.007, PMID 29567395.

Lustosa AK, DE Jesus Oliveira AC, Quelemes PV, Placido A, DA Silva FV, Oliveira IS. In situ synthesis of silver nanoparticles in a hydrogel of carboxymethyl cellulose with phthalated cashew gum as a promising antibacterial and healing agent. Int J Mol Sci. 2017;18(11):2399. doi: 10.3390/ijms18112399, PMID 29137157.

Muhsin MD, George G, Beagley K, Ferro V, Armitage C, Islam N. Synthesis and toxicological evaluation of a chitosan-L-leucine conjugate for pulmonary drug delivery applications. Biomacromolecules. 2014;15(10):3596-607. doi: 10.1021/bm5008635, PMID 25191851.

DU C, Qian J, Zhou L, SU Y, Zhang R, Dong CM. Biopolymer drug conjugate nanotheranostics for multimodal imaging guided synergistic cancer photothermal chemotherapy. ACS Appl Mater Interfaces. 2017;9(37):31576-88. doi: 10.1021/acsami.7b10163, PMID 28838236.

YI J, Liu Y, Zhang Y, Gao L. Fabrication of resveratrol loaded whey protein dextran colloidal complex for the stabilization and delivery of β-carotene emulsions. J Agric Food Chem. 2018;66(36):9481-9. doi: 10.1021/acs.jafc.8b02973, PMID 30125505.

Chavda VP, Patel AB, Mistry KJ, Suthar SF, WU ZX, Chen ZS. Nano drug delivery systems entrapping natural bioactive compounds for cancer: recent progress and future challenges. Front Oncol. 2022;12:867655. doi: 10.3389/fonc.2022.867655, PMID 35425710.

Rahman M, Almalki WH, Alrobaian M, Iqbal J, Alghamdi S, Alharbi KS. Nanocarriers loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma. Expert Opin Drug Deliv. 2021;18(4):489-513. doi: 10.1080/17425247.2021.1854223, PMID 33225771.

Gaber M, Hany M, Mokhtar S, Helmy MW, Elkodairy KA, Elzoghby AO. Boronic-targeted albumin shell oily core nano capsules for synergistic aromatase inhibitor/herbal breast cancer therapy. Mater Sci Eng C Mater Biol Appl. 2019 Dec;105:110099. doi: 10.1016/j.msec.2019.110099, PMID 31546395.

Barkat MA, Harshita M, Rizwanullah M, Pottoo FH, Beg S, Akhter S. Therapeutic nanoemulsion: concept to delivery. Curr Pharm Des. 2020;26(11):1145-66. doi: 10.2174/1381612826666200317140600, PMID 32183664.

Sneha K, Kumar A. Nanoemulsions: techniques for the preparation and the recent advances in their food applications. Innov Food Sci Emerg Technol. 2022 Mar;76:102914. doi: 10.1016/j.ifset.2021.102914.

Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928-39. doi: 10.1021/mp800240j, PMID 19278222.

Ansari MJ, Alnakhli M, Al Otaibi T, Al Meanazel OA, Anwer MK, Ahmed MM. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: improvement of solubility in vitro release ex-vivo permeation and anticancer activity. J Drug Deliv Sci Technol. 2021;61:102204. doi: 10.1016/j.jddst.2020.102204.

Zuccari G, Alfei S. Development of phytochemical delivery systems by nano-suspension and nano emulsion techniques. Int J Mol Sci. 2023;24(12):9824. doi: 10.3390/ijms24129824, PMID 37372971.

Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water soluble grapefruit flavonoid naringenin: design characterization in vitro and in vivo evaluation. Drug Deliv. 2015 May 19;22(4):552-61. doi: 10.3109/10717544.2013.878003, PMID 24512268.

Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani Mamaqani H. Stimulus responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 2019;92:1-18. doi: 10.1016/j.actbio.2019.05.018, PMID 31096042.

Suhail M, Rosenholm JM, Minhas MU, Badshah SF, Naeem A, Khan KU. Nanogels as drug delivery systems: a comprehensive overview. Ther Deliv. 2019;10(11):697-717. doi: 10.4155/tde-2019-0010, PMID 31789106.

Wei X, Senanayake TH, Bohling A, Vinogradov SV. Targeted nanogel conjugate for improved stability and cellular permeability of curcumin: synthesis pharmacokinetics and tumor growth inhibition. Mol Pharm. 2014;11(9):3112-22. doi: 10.1021/mp500290f, PMID 25072100.

Khandbahale SV. A review nanosuspension technology in drug delivery system. Asian Jour Pharmac Res. 2019;9(2):130-8. doi: 10.5958/2231-5691.2019.00021.2.

Shahidulla SM, Miskan R, Sultana S. Nanosuspensions in pharmaceutical sciences: a comprehensive review. Situations. 2023;13:7. doi: 10.52403/ijhsr.20230745.

Huang T, Wang Y, Shen Y, AO H, Guo Y, Han M. Preparation of high drug loading celastrol nanosuspensions and their anti breast cancer activities in vitro and in vivo. Sci Rep. 2020;10(1):8851. doi: 10.1038/s41598-020-65773-9, PMID 32483248.

Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv. 2019;16(1):69-78. doi: 10.1080/17425247.2019.1554647, PMID 30496697.

Alphandery E. Iron oxide nanoparticles for therapeutic applications. Drug Discov Today. 2020;25(1):141-9. doi: 10.1016/j.drudis.2019.09.020, PMID 31586641.

Parmanik A, Bose A, Ghosh B, Paul M, Itoo A, Biswas S. Development of triphala churna extract mediated iron oxide nanoparticles as novel treatment strategy for triple negative breast cancer. J Drug Deliv Sci Technol. 2022;76:103735. doi: 10.1016/j.jddst.2022.103735.

Hammami I, Alabdallah NM, Jomaa AA, kamoun M. Gold nanoparticles: synthesis properties and applications. J King Saud Univ Sci. 2021;33(7):101560. doi: 10.1016/j.jksus.2021.101560.

Chakravarty M, Vora A. Nanotechnology based antiviral therapeutics. Drug Deliv Transl Res. 2021;11(3):748-87. doi: 10.1007/s13346-020-00818-0, PMID 32748035.

Liu R, Pei Q, Shou T, Zhang W, HU J, LI W. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int J Nanomedicine. 2019 Jun;14:4091-103. doi: 10.2147/IJN.S203222, PMID 31239669.

Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG. Synthesis paradigm and applications of silver nanoparticles (AgNPs) a review. Sustain Mater Technol. 2017;13:18-23. doi: 10.1016/j.susmat.2017.08.001.

Nguyen NP, Dang NT, Doan L, Nguyen TT. Synthesis of silver nanoparticles: from conventional to modern methods a review. Processes. 2023;11(9):2617. doi: 10.3390/pr11092617.

Bhanumathi R, Vimala K, Shanthi K, Thangaraj R, Kannan S. Bioformulation of silver nanoparticles as berberine carrier cum anticancer agent against breast cancer. New J Chem. 2017;41(23):14466-77. doi: 10.1039/C7NJ02531A.

Kankala RK, Han YH, NA J, Lee CH, Sun Z, Wang SB. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater. 2020;32(23):e1907035. doi: 10.1002/adma.201907035, PMID 32319133.

Shariatinia Z, Pourzadi N. Designing novel anticancer drug release vehicles based on mesoporous functionalized MCM-41 nanoparticles. J Mol Struct. 2021;1242:130754. doi: 10.1016/j.molstruc.2021.130754.

Liu M, FU M, Yang X, Jia G, Shi X, JI J. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf B Biointerfaces. 2020;196:111284. doi: 10.1016/j.colsurfb.2020.111284, PMID 32771817.

Paliwal R, Paliwal SR. Advances in nanochemoprevention: controlled delivery of phytochemical bioactives; 2021. Springer Nature. Available from: https://books.google.com/books?hl=enandlr=andid=Nd8SEAAAQBAJandoi=fndandpg=PR7anddq=121.%09Advances+in+Nanochemoprevention:+Controlled+Delivery+of+Phytochemical+Bioactives+%7C+SpringerLink+andots=2jX9t4L0d5andsig=VNZc-htJd7X3i_YD_s6fB8R4MMM [Last accessed on 21 Nov 2023].

Drakalska E, Momekova D, Manolova Y, Budurova D, Momekov G, Genova M. Hybrid liposomal PE gylated calix[4]arene systems as drug delivery platforms for curcumin. Int J Pharm. 2014;472(1-2):165-74. doi: 10.1016/j.ijpharm.2014.06.034, PMID 24954662.

Bonifacio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1-15. doi: 10.2147/IJN.S52634, PMID 24363556.

Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJPPS. 2014;1(2). doi: 10.15226/2374-6866/1/2/00109.

Yen FL, WU TH, Lin LT, Cham TM, Lin CC. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen induced hepatotoxicity in rats. Food Chem Toxicol. 2008;46(5):1771-7. doi: 10.1016/j.fct.2008.01.021, PMID 18308443.

Lin AH, LI HY, Liu YM, Qiu X. Preparation and release characteristics of berberine chitosan nanoparticles in vitro. China Pharm. 2007;18:755-7.

SU YL, FU ZY, Zhang JY, Wang WM, Wang H, Wang YC. Microencapsulation of Radix salvia miltiorrhiza nanoparticles by spray drying. Powder Technol. 2008;184(1):114-21. doi: 10.1016/j.powtec.2007.08.014.

Chen Y, Lin X, Park H, Greever R. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine. 2009;5(3):316-22. doi: 10.1016/j.nano.2008.12.005, PMID 19523432.

Published

07-11-2024

How to Cite

MARIMUTHU, A., SEENIVASAN, R., PACHIYAPPAN, J. K., NIZAM, I., & GANESH, G. (2024). SYNERGY OF SCIENCE AND TRADITION: A NANOTECHNOLOGY-DRIVEN REVOLUTION IN NATURAL MEDICINE. International Journal of Applied Pharmaceutics, 16(6), 10–20. https://doi.org/10.22159/ijap.2024v16i6.50767

Issue

Section

Review Article(s)

Most read articles by the same author(s)