COMPUTATIONAL ASSESSMENT OF UNDARIA PINNATIFIDA AND MORINGA OLEIFERA COMPOUNDS AS ANTI-OBESITY AGENTS
DOI:
https://doi.org/10.22159/ijap.2024v16i5.50867Keywords:
Obesity, Undaria pinnatifida, Moringa oleifera, PPAR γ, Molecular dockingAbstract
Objective: The objective of this topic is to discuss the potential of using bioactive substances of Undaria Pinnatifida Ethanolic Extract of (UPEE) and Moringa Oleifera Methanolic Extract of (MOME) extracts as pharmacological agents and inhibitors of Peroxisome Proliferator-Activated Receptor gamma (PPAR-γ), Fat Mass and Obesity-Associated (FTO), Resistin and leptin to counter obesity.
Methods: The study uses Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier-Transform InfraRed (FTIR) Spectroscopy techniques to identify the bioactive components of these extracts and evaluates their efficacy through in silico assessments and molecular docking analysis.
Results: Analysis of docking results revealed that ligand interaction with FTO (ID: 3LFM) docking complex showed good binding affinity, binding oreintation, pharmocological properties. Hence, the best ligands were proposed as the best antagonist to block PPAR-γ, FTO, Resistin and leptin, which plays major role in the drug devolopment pathways.
Conclusion: UPEE and MOME extracts acts as pharmacological agents for anti-obesity genes. PPAR-γ-4CI5 has a best docking score (-7.716 kcal/mol), as a result. As a result, the standard was recommended as the best antagonist to block the key enzyme involved in the drug development pathways.
Downloads
References
Qasim A, Turcotte M, de Souza RJ, Samaan MC, Champredon D, Dushoff J. On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obes Rev. 2018 Feb;19(2):121-49. doi: 10.1111/obr.12625, PMID 29144594.
Saunders KH, Igel LI, Shukla AP, Aronne LJ. Drug-induced weight gain: rethinking our choices. J Fam Pract. 2016 Nov;65(11):780-8. PMID 28087864.
Bastien M, Poirier P, Lemieux I, Despres JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014 Jan-Feb;56(4):369-81. doi: 10.1016/j.pcad.2013.10.016, PMID 24438728.
Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today. 2007 Oct;12(19-20):879-89. doi: 10.1016/j.drudis.2007.07.024, PMID 17933690.
Moreno Cordova EN, Arvizu Flores AA, Valenzuela Soto EM, Garcia Orozco KD, Wall Medrano A, Alvarez Parrilla E. Gallotannins are uncompetitive inhibitors of pancreatic lipase activity. Biophys Chem. 2020 Sep;264:106409. doi: 10.1016/j.bpc.2020.106409, PMID 32534374.
Chaput JP, Berube Parent S, Tremblay A. Obesity and cardiovascular physiology: impact of some pharmacological agents. Curr Vasc Pharmacol. 2005 Apr;3(2):185-93. doi: 10.2174/1570161053586886, PMID 15853638.
Cheung BM, Cheung TT, Samaranayake NR. Safety of antiobesity drugs. Ther Adv Drug Saf. 2013 Aug;4(4):171-81. doi: 10.1177/2042098613489721, PMID 25114779, PMCID PMC4125319.
Grasa Lopez A, Miliar Garcia A, Quevedo Corona L, Paniagua Castro N, Escalona Cardoso G, Reyes Maldonado E. Undaria pinnatifida and fucoxanthin ameliorate lipogenesis and markers of both inflammation and cardiovascular dysfunction in an animal model of diet-induced obesity. Mar Drugs. 2016 Aug 3;14(8):148. doi: 10.3390/md14080148, PMID 27527189, PMCID PMC4999909.
Sofowora A. Recent trends in research into African medicinal plants. J Ethnopharmacol. 1993 Mar;38(2-3):209-14. doi: 10.1016/0378-8741(93)90017-y, PMID 8510470.
Jiang S, Yu M, Wang Y, Yin W, Jiang P, Qiu B. Traditional cooking methods affect color, texture and bioactive nutrients of Undaria pinnatifida. Foods. 2022;11(8):1078. doi: 10.3390/foods11081078, PMID 35454666.
Ali Redha AA, Perna S, Riva A, Petrangolini G, Peroni G, Nichetti M. Novel insights on the anti-obesity potential of the miracle tree, moringa oleifera: a systematic review. J Funct Foods. 2021;84:104600. doi: 10.1016/j.jff.2021.104600.
Kim DS, Choi MH, Shin HJ. Extracts of moringa oleifera leaves from different cultivation regions show both antioxidant and antiobesity activities. J Food Biochem. 2020 Jul;44(7):e13282. doi: 10.1111/jfbc.13282, PMID 32436270.
Daghaghele S, Kiasat AR, Safieddin Ardebili SM, Mirzajani R. Intensification of extraction of antioxidant compounds from Moringa Oleifera leaves using the ultrasound-assisted approach: BBD-RSM design. International Journal of Fruit Science. 2021;21(1):693–705. doi: 10.1080/15538362.2021.1926396
Bhattacharya A, Tiwari P, Sahu PK, Kumar S. A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J Pharm Bioallied Sci. 2018 Oct-Dec;10(4):181-91. doi: 10.4103/JPBS.JPBS_126_18, PMID 30568375, PMCID PMC6266645.
Avwioroko OJ, Anigboro AA, Otuechere CA, Atanu FO, Dairo OF, Oyetunde TT. α-amylase inhibition, anti-glycation property and characterization of the binding interaction of citric acid with α-amylase using multiple spectroscopic, kinetics and molecular docking approaches. J Mol Liq. 2022;360:119454. doi: 10.1016/j.molliq.2022.119454.
Moreno Cordova EN, Arvizu Flores AA, Valenzuela Soto EM, Garcia Orozco KD, Wall Medrano A, Alvarez Parrilla E. Gallotannins are uncompetitive inhibitors of pancreatic lipase activity. Biophys Chem. 2020;264:106409. doi: 10.1016/j.bpc.2020.106409, PMID 32534374.
Alasalvar C, Ozturk N, Gokce H, Guder A, Mentese E, Bektaş H. Synthesis, structural, spectral, antioxidant, bioactivity and molecular docking investigations of a novel triazole derivative. J Biomol Struct Dyn. 2022;40(14):6642-55. doi: 10.1080/07391102.2021.1887764, PMID 33594957.
McNaught AD. Compendium of chemical terminology. Vol. 1669. Oxford: Blackwell Publishing Science; 1997.
Dandekar R, Fegade B, Bhaskar VH. GC-MS analysis of phytoconstituents in alcohol extract of epiphyllum oxypetalum leaves. J Pharmacogn Phytochem. 2015;4(1):148-54.
Rester U. From virtuality to reality-virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel. 2008 Jul;11(4):559-68. PMID 18600572.
Rollinger JM, Steindl TM, Schuster D, Kirchmair J, Anrain K, Ellmerer EP. Structure-based virtual screening for the discovery of natural inhibitors for human rhinovirus coat protein. J Med Chem. 2008;51(4):842-51. doi: 10.1021/jm701494b, PMID 18247552.
Ballester PJ, Mitchell JBO. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics. 2010;26(9, May):1169-75. doi: 10.1093/bioinformatics/btq112, PMID 20236947.
Dzobo K. The role of natural products as sources of therapeutic agents for innovative drug discovery. Compr Pharmacol. 2022:408-22. doi: 10.1016/B978-0-12-820472-6.00041-4, PMCID PMC8016209.
Kannan S. FT-IR and EDS analysis of the seaweeds sargassum wightii (brown algae) and gracilariacorticata (red algae). Int J Curr Microbiol Appl Sci. 2014;3(4):341-51.
Koh HSA, Lu J, Zhou W. Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand, carbohydrate Polymers. 2019;212:178-85. doi: 10.1016/j. carbpol.2019.02.040.
Synytsya A, Kim WJ, Kim SM, Pohl R, Alla Synytsya F. Kvasnicka, Jana Copikova, Yong Il Park, Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida, carbohydrate. Polymers. 2010;81(1):41-8. doi: 10.1016/j.carbpol.2010.01.052.
Hentati F, Barkallah M, Ben Atitallah A, Dammak M, Louati I, Pierre G. Quality characteristics and functional and antioxidant capacities of algae-fortified fish burgers prepared from common barbel (Barbus barbus). BioMed Res Int. 2019. doi: 10.1155/2019/2907542, PMID 31687385.
Bunaciu AA, Aboul-Enein HY, Fleschin S. Recent applications of fourier transform infrared spectrophotometry in herbal medicine analysis. Appl Spectrosc Rev. 2011;46(4):251-60. doi: 10.1080/05704928.2011.565532.
Brangule A, Sukele R, Bandere D. Herbal medicine characterization perspectives using advanced FTIR sample techniques-diffuse reflectance (DRIFT) and photoacoustic spectroscopy (PAS). Front Plant Sci. 2020;11:356. doi: 10.3389/fpls.2020.00356, PMID 32362902.
Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta. 2007;1767(9):1073-101. doi: 10.1016/j.bbabio.2007.06.004, PMID 17692815.
Rafiquzzaman SM, Kim EY, Kim YR, Nam TJ, Kong IS. Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model. Int J Biol Macromol. 2013;62:265-72. doi: 10.1016/j.ijbiomac.2013.09.009, PMID 24060280.
Li YQ, Kong DX, Wu H. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind Crops Prod. 2013;41:269-78. doi: 10.1016/j.indcrop.2012.04.056.
Katelia R, Jauhar MM, Syaifie PH, Nugroho DW, Ramadhan D, Arda AG. In silico investigation of xanthone derivative potency in inhibiting carbonic anhydrase II (ca ii) using molecular docking and molecular dynamics (md) simulation. Int J App Pharm. 2022;14(5):190-8. doi: 10.22159/ijap.2022v14i5.45388.
Muhaimin M, Chaerunisaa AY, Rostinawati T, Amalia E, Hazrina A, Nurhasanah S. A reviewon nanoparticles of Moringa oleifera extract: preparation, characterization, and activity. Int J App Pharm. 2023;15(4):43-51. doi: 10.22159/ijap.2023v15i4.47709.
Bhange A, Pethe A, Hadke A. Design and development of phytosomal soft nanoparticles for liver targeting. Int J App Pharm. 2023;15(1):280-9. doi: 10.22159/ijap.2023v15i1.46303.
SR, RV, PA. GCMS analysis on andrographis paniculata seed extract and its anticancer activity. International Journal of Applied Pharmaceutics. 2022;14:84-88. doi: 10.22159/ijap.2022.v14ti.5.
s
Published
How to Cite
Issue
Section
Copyright (c) 2024 C. SAI KALYANI YOGINI, CHITTA SURESH KUMAR, C. M. ANURADHA, C. H. M. KUMARI CHITTURI
This work is licensed under a Creative Commons Attribution 4.0 International License.