IDENTIFICATION OF BENZYLIDENE AMINO PHENOL INHIBITORS TARGETING THYMIDYLATE KINASE FOR COLON CANCER TREATMENT THROUGH IN SILICO STUDIES

Authors

  • MOHD ABDUL BAQI Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0000-3711-3568
  • KOPPULA JAYANTHI Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
  • RAJESH KUMAR R. Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50874

Keywords:

Thymidylate kinase (TMK), Molecular docking, Molecular dynamics (MD) simulations, MM-GBSA, High-throughput virtual screening (HTVS), ADME profiles, Cancer therapy, Colorectal cancer (CRC), Human thymidylate kinase (HaTMK)

Abstract

Objective: Thymidylate kinase (TMK) is pivotal in bacterial DNA synthesis, facilitating the conversion of Deoxythymidine Monophosphate (dTMP) into Deoxythymidine Diphosphate (dTDP). This crucial role positions TMK as an attractive target for the creation of innovative anti-cancer therapies. To date, there have been no anti-cancer medications developed specifically targeting this enzyme.

Methods: The investigation involved screening benzylidene derivatives as potential ligands for their efficacy. This process was executed through the utilization of the Glide module for molecular docking, followed by an Absorption, Distribution, Metabolism, and Excretion (ADME) analysis via Qikprop. Subsequently, the Prime Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) approach was employed to evaluate the binding free energy of these ligands. To further assess the stability of these ligands as inhibitors of Human Thymidylate Kinase (HaTMK), molecular dynamics (MD) simulations were conducted over a 100 nanosecond timeframe.

Results: Among the screened molecules, ten exhibited significant binding affinity, engaging in hydrogen and hydrophobic interactions with the Asp15, Phe105, and Phe72 residues of the HaTMK enzyme (PDB ID: 1E2D). Notably, the molecule 4-((4-dichlorobenzylidene) amino) phenol demonstrated the highest docking score with an Extra Precision (XP)-docking value of −6.33 kcal/mol, indicating a strong binding affinity based on extra-precision docking. Further analysis through Prime MM-GBSA revealed notable binding energies, including a ΔGBind of −52.98 kcal/mol, ΔGLipo of −27.75 kcal/mol, and ΔGVdW of −47.70kcal/mol, suggesting significant interaction strength. Throughout the MD simulations, interactions between the ligand and the Glu152 and Phe105 residues remained stable, underlining the molecule's potential as a TMK inhibitor.

Conclusion: The ligand 4-((4-dichlorobenzylidene) amino)phenol, characterized by its benzene ring, benzylidene moiety, and oxygen group, engages effectively with the HaTMK protein's active sites. This interaction showcases its promising potential as an inhibitor of HaTMK, positioning it as a viable candidate for the treatment of colon cancer.

Downloads

Download data is not yet available.

References

Edelman LB, Eddy JA, Price ND. In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med. 2010 Jul;2(4):438-59. doi: 10.1002/wsbm.75, PMID 20836040.

Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017 May 6;67(3):177-93. doi: 10.3322/caac.21395, PMID 28248415.

Labianca R, Beretta G, Gatta G, de Braud F, Wils J. Colon cancer. Crit Rev Oncol Hematol. 2004;51(2):145-70. doi: 10.1016/j.critrevonc.2004.03.003, PMID 15276177.

Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023 May;73(3):233-54. doi: 10.3322/caac.21772, PMID 36856579.

Cui Q, Shin WS, Luo Y, Tian J, Cui H, Yin D. Thymidylate kinase: an old topic brings new perspectives. Curr Med Chem. 2013;20(10):1286-305. doi: 10.2174/0929867311320100006, PMID 23394555.

Ostermann N, Schlichting I, Brundiers R, Konrad M, Reinstein J, Veit T. Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure. 2000;8(6):629-42. doi: 10.1016/s0969-2126(00)00149-0, PMID 10873853.

Sukumar S, Krishman A, Khan MK. Protein kinases as antituberculosis targets: the case of thymidylate kinases. Front Biosci (Landmark Ed). 2020;25(9):1636-54. doi: 10.2741/4871, PMID 32114448.

Chen YH, Hsu HY, Yeh MT, Chen CC, Huang CY, Chung YH. Chemical inhibition of human thymidylate kinase and structural insights into the phosphate binding loop and ligand-induced degradation. J Med Chem. 2016 Nov 10;59(21):9906-18. doi: 10.1021/acs.jmedchem.6b01280, PMID: 27748121.

Ostermann N, Schlichting I, Brundiers R, Konrad M, Reinstein J, Veit T. Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure. 2000;8(6):629-42. doi: 10.1016/s0969-2126(00)00149-0, PMID 10873853.

James JP, Aiswarya TC, Priya S, Jyothi D, Dixit SR. Structure based multitargeted molecular docking analysis of pyrazole-condensed heterocyclics against lung cancer. Int J App Pharm. 2021;3(6):157-69. doi: 10.22159/ijap.2021v13i6.42801.

Dar AM, Mir S. Molecular docking: approaches, types, applications and basic challenges. J Anal Bioanal Tech. 2017;08(2):1-3. doi: 10.4172/2155-9872.1000356.

Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013 Mar;27(3):221-34. doi: 10.1007/s10822-013-9644-8, PMID 23579614.

Sunitha Sukumaran, Meghna M, Sneha S, Arjun B, Sathianarayanan S, Saranya T S. Insilico analysis of acridone against TNF-α and PDE4 targets for the treatment of psoriasis. IJRPS. 2020;11(SPL4):1251-9. doi: 10.26452/ijrps.v11iSPL4.4286.

Dunkel M, Fullbeck M, Neumann S, Preissner R. Super natural: a searchable database of available natural compounds. Nucleic Acids Res. 2006;34:D678-83. doi: 10.1093/nar/gkj132, PMID 16381957.

Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE. A hierarchical approach to all‐atom protein loop prediction. Proteins. 2004 May;55(2):351-67. doi: 10.1002/prot.10613, PMID 15048827.

Dhawale S, Gawale S, Jadhav A, Gethe K, Raut P, Hiwarale N. In silico approach targeting polyphenol as fabh inhibitor in bacterial infection. Int J Pharm Pharm Sci. 2022;14(11):25-30. doi: 10.22159/ijpps.2022v14i11.45816.

Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML. Explicit reversible integrators for extended systems dynamics. Mol Phys. 1996;87(5):1117-57. doi: 10.1080/00268979600100761.

Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G. Probing the alpha-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des. 2010;75(4):348-59. doi: 10.1111/j.1747-0285.2010.00951.x, PMID 20331649.

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh ewald method. Journal of Chemical Physics. 1995;103(19):8577-93. doi: 10.1063/1.470117.

Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput. 2016;12(1):281-96. doi: 10.1021/acs.jctc.5b00864, PMID 26584231.

Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. Journal of Chemical Physics. 1994;101(5):4177-89. doi: 10.1063/1.467468.

Badavath VN, Sinha BN, Jayaprakash V. Design, in silico docking and predictive ADMEproperties of novel pyrazoline derivatives with selective human MAO inhibitory activity. Int J Pharm Pharm Sci. 2015;7:277-82.

Chen YH, Hsu HY, Yeh MT, Chen CC, Huang CY, Chung YH. Chemical inhibition of human thymidylate kinase and structural insights into the phosphate binding loop and ligand-induced degradation. J Med Chem. 2016;59(21):9906-18. doi: 10.1021/acs.jmedchem.6b01280, PMID 27748121.

Vedula GS, Nemala SK. In silico molecular docking studies of di hydro pyrimidinones as MTB thymidylate kinase inhibitors. IJHS. 2022;6(S4)4966-76, doi: 10.53730/ijhs.v6nS4.9216.

Qureshi B, Khalil R, Saeed M, Nur-e-Alam M, Ahmed S, Ul-Haq Z. Structure-based discovery of potent staphylococcus aureus thymidylate kinase inhibitors by virtual screening. Med Chem. 2022;19(1):75-90. doi: 10.2174/1573406418666220407092638, PMID 35392789.

Khan A, Adil S, Qudsia HA, Waheed Y, Alshabrmi FM, Wei DQ. Structure-based design of promising natural products to inhibit thymidylate kinase from monkeypox virus and validation using free energy calculations. Comput Biol Med. 2023;158:106797. doi: 10.1016/j.compbiomed.2023.106797, PMID 36966556.

Faisal S, Tariq MH, Ullah R, Zafar S, Rizwan M, Bibi N. Exploring the antibacterial, antidiabetic, and anticancer potential of Mentha arvensis extract through in silico and in vitro analysis. BMC Complement Med Ther. 2023 Jul 26;23(1):267. doi: 10.1186/s12906-023-04072-y, PMID 37496047.

Rodrigues Garcia D, Rodrigues De Souza F, Paula Guimaraes A, Castro Ramalho T, Palermo De Aguiar A, Celmar Costa França T. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox: part II. J Biomol Struct Dyn. 2019 Nov 22;37(17):4569-79. doi: 10.1080/07391102.2018.1554510, PMID 30488769.

Kandeel M, Kitade Y, Al-Taher A, Al-Nazawi M. The structural basis of unique substrate recognition by plasmodium thymidylate kinase: molecular dynamics simulation and inhibitory studies. PLOS ONE. 2019;14(2):e0212065. doi: 10.1371/journal.pone.0212065, PMID 30730992.

Published

07-07-2024

How to Cite

BAQI, M. A., JAYANTHI, K., & R., R. K. (2024). IDENTIFICATION OF BENZYLIDENE AMINO PHENOL INHIBITORS TARGETING THYMIDYLATE KINASE FOR COLON CANCER TREATMENT THROUGH IN SILICO STUDIES. International Journal of Applied Pharmaceutics, 16(4), 92–99. https://doi.org/10.22159/ijap.2024v16i4.50874

Issue

Section

Original Article(s)