LEVERAGING THE SUCCESS OF MRNA LIPID NANOPARTICLE VACCINE IN COVID-19 TREATMENT: A NARRATIVE REVIEW ON ITS POTENTIAL APPLICATION IN MALARIA TREATMENT

Authors

  • FRANKLYN NONSO IHEAGWAM Department of Biochemistry, Covenant University, Ota, Nigeria. Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora https://orcid.org/0000-0001-8487-4052
  • ENIOLA DEBORAH ADEDOYIN Department of Biochemistry, Covenant University, Ota, Nigeria. Covenant Applied Informatics and Communication Africa Centre of Excellence, Covenant University, Ota, Nigeria https://orcid.org/0009-0003-3639-3758

DOI:

https://doi.org/10.22159/ijap.2024v16i5.50885

Keywords:

Malaria, Vaccine, mRNA, COVID-19, Plasmodium

Abstract

Malaria, which is caused by the Plasmodium parasite and transmitted by mosquitoes, continues to be a major global health issue. The worldwide health community continues to work toward finding a conclusive answer to the malaria problem, but it is still elusive. Developing a successful malaria vaccine has proven difficult due to the Plasmodium parasite’s complicated life cycle and ability to change and develop resistance to interventions rapidly. Amidst this backdrop, the advent of mRNA Lipid Nanoparticle (mRNA-LNP) vaccines, exemplified by their resounding success in mitigating the Coronavirus Disease 2019 (COVID-19) pandemic, has kindled newfound hope in vaccine development. This review examines the potential of leveraging mRNA technology to induce a robust immune response, thereby potentially revolutionising the landscape of malaria prevention through the development of breakthrough malaria vaccines. The intricate interplay between the efficacy of the mRNA-LNP vaccine against COVID-19 and its prospective utility in addressing malaria is also deliberated upon.

Downloads

Download data is not yet available.

References

Laurens MB. Novel malaria vaccines. Hum Vaccin Immunother. 2021;17(11):4549-52. doi: 10.1080/21645515.2021.1947762, PMID 34347570.

Phalak SD, Bodke V, Bodke V, Pandav S, Ranaware M. A systematic review on malaria disease and its treatments focus on artemether drug. Int J Curr Pharm Sci. 2024;16(2):1-8. doi: 10.22159/ijcpr.2024v16i2.4028.

Jamshidi E, Eftekhar Ardebili H, Yousefi Nooraie R, Raeisi A, Malekafzali Ardakani H, Sadeghi R. A social network analysis on immigrants and refugees access to services in the malaria elimination context. Malar J. 2019;18(1):1. doi: 10.1186/s12936-018-2635-4, PMID 30602373.

Mutapi F, Billingsley PF, Secor WE. Infection and treatment immunizations for successful parasite vaccines. Trends Parasitol. 2013;29(3):135-41. doi: 10.1016/j.pt.2013.01.003, PMID 23415733.

Mahmoudi S, Keshavarz H. Malaria vaccine development the need for novel approaches a review article. Iran J Parasitol. 2018;13(1):1-10. PMID 29963080.

Ponnapalli R, Divya MS, Raju KV, Nori LP. Regulatory framework vaccine development in US India and EU. Int J App Pharm. 2023;15:63-71. doi: 10.22159/ijap.2023v15i2.46723.

Duffy PE, Patrick Gorres J. Malaria vaccines since 2000 progress priorities products. NP J Vaccines. 2020;5(1):48. doi: 10.1038/s41541-020-0196-3, PMID 32566259.

Kyriakidis NC, Lopez Cortes A, Gonzalez EV, Grimaldos AB, Prado EO. SARS CoV 2 vaccines strategies a comprehensive review of phase 3 candidates. Vaccines. 2021;6(1):28. doi: 10.1038/s41541-021-00292-w, PMID 33619260.

Tsoumani ME, Voyiatzaki C, Efstathiou A. Malaria vaccines from the past towards the mRNA vaccine era. Vaccines. 2023;11(9):1452. doi: 10.3390/vaccines11091452, PMID 37766129.

Zhang L, More KR, Ojha A, Jackson CB, Quinlan BD, Li H. Effect of mRNA-LNP components of two globally marketed COVID-19 vaccines on efficacy and stability. NPJ Vaccines. 2023;8(1):156. doi: 10.1038/s41541-023-00751-6, PMID 37821446.

Hogan MJ, Pardi N. mRNA vaccines in the covid-19 pandemic and beyond. Annu Rev Med. 2022;73:17-39. doi: 10.1146/annurev-med-042420-112725, PMID 34669432.

Chavda VP, Soni S, Vora LK, Soni S, Khadela A, Ajabiya J. mRNA-based vaccines and therapeutics for COVID-19 and future pandemics. Vaccines (Basel). 2022;10(12):2150. doi: 10.3390/vaccines10122150, PMID 36560560.

Al Fayez N, Nassar MS, Alshehri AA, Alnefaie MK, Almughem FA, Alshehri BY. Recent advancement in mRNA vaccine development and applications. Pharmaceutics. 2023;15(7):1972. doi: 10.3390/pharmaceutics15071972, PMID 37514158.

Arama C, Troye Blomberg M. The path of malaria vaccine development challenges and perspectives. J Intern Med. 2014;275(5):456-66. doi: 10.1111/joim.12223, PMID 24635625.

Belachew EB. Immune response and evasion mechanisms of plasmodium falciparum parasites. J Immunol Res. 2018;3:25:6529681. doi: 10.1155/2018/6529681, PMID 29765991.

Zhuan SX, Zhang C, Joy DA, Hosts. Malaria parasite interactions and impacts on mutual evolution. Front Cell Infect Microbiol. 2020;10:587933.

Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol. 2014;5:359. doi: 10.3389/fimmu.2014.00359, PMID 25120545.

Naung MT, Martin E, Munro J, Mehra S, Guy AJ, Laman M. Global diversity and balancing selection of 23 leading plasmodium falciparum candidate vaccine antigens. PLOS Comput Biol. 2022;18(2):e1009801. doi: 10.1371/journal.pcbi.1009801, PMID 35108259.

Osamor VC, Ikeakanam E, Bishung JU, Abiodun TN, Ekpo RH. COVID-19 vaccines computational tools and development. Inform Med Unlocked. 2023;37:101164. doi: 10.1016/j.imu.2023.101164, PMID 36644198.

Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging concepts and technologies in vaccine development. Front Immunol. 2020;11:583077. doi: 10.3389/fimmu.2020.583077, PMID 33101309.

Lorenz V, Karanis G, Karanis P. Malaria vaccine development and how external forces shape it an overview. Int J Environ Res Public Health. 2014;11(7):6791-807. doi: 10.3390/ijerph110706791, PMID 24983392.

Draper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK. Malaria vaccines recent advances and new horizons. Cell Host Microbe. 2018;24(1):43-56. doi: 10.1016/j.chom.2018.06.008, PMID 30001524.

Kanoi BN, Maina M, Likhovole C, Kobia FM, Gitaka J. Malaria vaccine approaches leveraging technologies optimized in the COVID-19 era. Front Trop Dis. 2022;3:9888665. doi: 10.3389/fitd.2022.988665.

Laurens MB. RTSS/AS01 vaccine (mosquirix™) an overview. Hum Vaccin Immunother. 2020;16(3):480-9. doi: 10.1080/21645515.2019.1669415, PMID 31545128.

Datoo MS, Dicko A, Tinto H, Ouedraogo JB, Hamaluba M, Olotu A. Safety and efficacy of malaria vaccine candidate r21/matrix-m in african children a multicentre, double-blind, randomised phase 3 trial. Lancet. 2024;403(10426):533-44. doi: 10.1016/S0140-6736(23)02511-4, PMID 38310910.

Aderinto N, Olatunji G, Kokori E, Sikirullahi S, Aboje JE, Ojabo RE. A perspective on oxfords R21/Matrix-MTM malaria vaccine and the future of global eradication efforts. Malar J. 2024;23(1):16. doi: 10.1186/s12936-024-04846-w, PMID 38216923.

Hammershaimb EA, Berry AA. Pre-erythrocytic malaria vaccines RTSS R21 and beyond. Expert Rev Vaccines. 2024;23(1):49-52. doi: 10.1080/14760584.2023.2292204, PMID 38095048.

Bonam SR, Renia L, Tadepalli G, Bayry J, Kumar HM. Plasmodium falciparum malaria vaccines and vaccine adjuvants. Vaccines (Basel). 2021;9(10):1072. doi: 10.3390/vaccines9101072, PMID 34696180.

Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AV. Enhancing protective immunity to malaria with a highly immunogenic virus like particle vaccine. Sci Rep. 2017;7:46621. doi: 10.1038/srep46621, PMID 28422178.

Chandley P, Ranjan R, Kumar S, Rohatgi S, Hosts. Host-parasite interactions during plasmodium infection implications for immunotherapies. Front Immunol. 2022;13:1091961. doi: 10.3389/fimmu.2022.1091961, PMID 36685595.

Moorthy V, Binka F. R21/Matrix-M a second malaria vaccine. Lancet. 2021;397(10287):1782-3. doi: 10.1016/S0140-6736(21)01065-5, PMID 33964224.

Datoo MS, Natama MH, Some A, Traore O, Rouamba T, Bellamy D. Efficacy of a low-dose candidate malaria vaccine r21 in adjuvant matrix-m with seasonal administration to children in burkina faso a randomised controlled trial. Lancet. 2021;397(10287):1809-818. doi: 10.1016/S0140-6736(21)00943-0, PMID 33964223.

Mumtaz H, Nadeem A, Bilal W, Ansar F, Saleem S, Khan QA. Acceptance availability and feasibility of RTS S/AS01 malaria vaccine a review. Immun Inflamm Dis. 2023;11(6):e899. doi: 10.1002/iid3.899, PMID 37382251.

Stanisic DI, Good MF. Malaria vaccines: progress to date. BioDrugs. 2023;37(6):737-56. doi: 10.1007/s40259-023-00623-4, PMID 37728713.

Verma A, Anand A, Patel VA, Nazar MW, Mukherjee A, Karim KA. Breaking the malaria barrier the WHO-approved R21/Matrix-M vaccine and its global impact an editorial. Ann Med Surg (Lond). 2024;86(4):1824-7. doi: 10.1097/MS9.0000000000001648, PMID 38576926.

Liu T, Zhu F, Tan N, Chen S, Xu W. Plasmodium. in Tang YW, Hindiyeh MY, Liu D, Sails A, Spearman P, Zhang JR. editors. Molecular medical microbiology. MA Academic Press; 2024. p. 3005-29.

Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R. Anopheles metabolic proteins in malaria transmission prevention and control a review. Parasit Vectors. 2020;13(1):465. doi: 10.1186/s13071-020-04342-5, PMID 32912275.

Jelinkova L, Jhun H, Eaton A, Petrovsky N, Zavala F, Chackerian B. An epitopebased malaria vaccine targeting the junctional region of circumsporozoite protein. NPJ Vaccines. 2021;6(1):13. doi: 10.1038/s41541-020-00274-4, PMID 33479242.

Lu C, Song G, Beale K, Yan J, Garst E, Feng J. Design and assessment of TRAP-CSP fusion antigens as effective malaria vaccines. Plos One. 2020;15(1):e0216260. doi: 10.1371/journal.pone.0216260, PMID 31967991.

Mordmuller B, Sulyok Z, Sulyok M, Molnar Z, Lalremruata A, Calle CL. A PfSPZ vaccine immunization regimen equally protective against homologous and heterologous controlled human malaria infection. NPJ Vaccines. 2022;7(1):100. doi: 10.1038/s41541-022-00510-z, PMID 35999221.

Ewer KJ, Sierra Davidson K, Salman AM, Illingworth JJ, Draper SJ, Biswas S. Progress with viral vectored malaria vaccines a multistage approach involving unnatural immunity Vaccine. 2015;33(52):7444-51. doi: 10.1016/j.vaccine.2015.09.094, PMID 26476366.

El-Moamly AA, El-Sweify MA. Malaria vaccines the 60 y journey of hope and final success-lessons learned and future prospects. Trop Med Health. 2023;51(1):29. doi: 10.1186/s41182-023-00516-w, PMID 37198702.

Sathishkumar V, Nirmolia T, Bhattacharyya DR, Patgiri SJ. Genetic polymorphism of plasmodium falciparum msp-1 msp-2 and glurp vaccine candidate genes in preartemisinin era clinical isolates from lakhimpur district in Assam Northeast India. Access Microbiol. 2022;4(4):000350. doi: 10.1099/acmi.0.000350, PMID 35812711.

Ghoshal S, Datta Kanjilal S, Sengupta S. Plasmodium vivax vaccine candidate msp1 displays conserved b cell epitope despite high genetic diversity. Infect Genet Evol. 2021;93:104929. doi: 10.1016/j.meegid.2021.104929, PMID 34022438.

Shimp RL, Rowe C, Reiter K, Chen B, Nguyen V, Aebig J. Development of a pfs25-epa malaria transmission blocking vaccine as a chemically conjugated nanoparticle. Vaccine. 2013;31(28):2954-962. doi: 10.1016/j.vaccine.2013.04.034, PMID 23623858.

Mulamba C, Williams C, Kreppel K, Ouedraogo JB, Olotu AI. Evaluation of the pfs25-imx313/matrix-m malaria transmission-blocking candidate vaccine in endemic settings. Malar J. 2022;21(1):159. doi: 10.1186/s12936-022-04173-y, PMID 35655174.

Healy SA, Anderson C, Swihart BJ, Mwakingwe A, Gabriel EE, Decederfelt H. Pfs230 yields higher malaria transmission blocking vaccine activity than Pfs25 in humans but not mice. J Clin Invest. 2021;131(7):e146221. doi: 10.1172/JCI146221, PMID 33561016.

Singh K, Burkhardt M, Nakuchima S, Herrera R, Muratova O, Gittis AG. Structure and function of a malaria transmission blocking vaccine targeting pfs230 and pfs230-pfs48/45 proteins. Commun Biol. 2020;3(1):395. doi: 10.1038/s42003-020-01123-9, PMID 32709983.

Parums DV. Editorial current status of two adjuvanted malaria vaccines and the World Health Organization (who) strategy to eradicate malaria by 2030. Med Sci Monit. 2023;29:e939357. doi: 10.12659/MSM.939357, PMID 36587274.

Hasson SS, Al-Busaidi JK, Sallam TA. The past current and future trends in DNA vaccine immunisations. Asian Pac J Trop Biomed. 2015;5(5):344-53. doi: 10.1016/S2221-1691(15)30366-X.

Li S, Locke E, Bruder J, Clarke D, Doolan DL, Havenga MJ, Tang D, Chu C, Kampen KRV, Viret JF, Zavala F, Dubovsky F. Viral vectors for malaria vaccine development. Vaccine. 2007;25:2567-74.

Schuldt NJ, Amalfitano A. Malaria vaccines focus on adenovirus-based vectors. Vaccine. 2012;30(35):5191-8. doi: 10.1016/j.vaccine.2012.05.048, PMID 22683663.

Chen J, Chen J, Xu Q. Current developments and challenges of mRNA vaccines. Annu Rev Biomed Eng. 2022;24:85-109. doi: 10.1146/annurev-bioeng-110220-031722, PMID 35231177.

Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases principles delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817-38. doi: 10.1038/s41573-021-00283-5, PMID 34433919.

Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261-79. doi: 10.1038/nrd.2017.243, PMID 29326426.

Hayashi CT, Cao Y, Clark LC, Tripathi AK, Zavala F, Dwivedi G. mRNA-LNP expressing PfCSP and Pfs25 vaccine candidates targeting infection and transmission of Plasmodium falciparum. NPJ Vaccines. 2022;7(1):155. doi: 10.1038/s41541-022-00577-8, PMID 36456563.

Kurup D, Myers J, Schnell MJ. Current vaccine strategies against SARS-CoV-2 promises and challenges. J Allergy Clin Immunol. 2022;150(1):17-21. doi: 10.1016/j.jaci.2022.05.008, PMID 35618046.

Chirico F, Teixeira da Silva JA, Tsigaris P, Sharun K. Safety & effectiveness of COVID-19 vaccines a narrative review. Indian J Med Res. 2022;155(1):91-104. doi: 10.4103/ijmr.IJMR_474_21, PMID 35859436.

Pollard AJ, Bijker EM. A guide to vaccinology from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83-100. doi: 10.1038/s41577-020-00479-7, PMID 33353987.

Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M. mRNA vaccines for COVID-19 and diverse diseases. J Control Release. 2022;345:314-33. doi: 10.1016/j.jconrel.2022.03.032, PMID 35331783.

Lundstrom K. The current status of COVID-19 vaccines. Front Genome Ed. 2020;2:579297. doi: 10.3389/fgeed.2020.579297, PMID 34713220.

Rauch S, Jasny E, Schmidt KE, Petsch B. New vaccine technologies to combat outbreak situations. Front Immunol. 2018;9:1963. doi: 10.3389/fimmu.2018.01963, PMID 30283434.

Alturki SO, Alturki SO, Connors J, Cusimano G, Kutzler MA, Izmirly AM. The 2020 pandemic current Sars-COV-2 vaccine development. Front Immunol. 2020;11:1880. doi: 10.3389/fimmu.2020.01880, PMID 32973779.

Nashwan AJ, Yassin MA, Soliman AT, De Sanctis V, Ibrahim MI. mRNA-based COVID-19 vaccines booster dose benefits risks and coverage. Acta Biomed. 2022;93(3):e2022236. doi: 10.23750/abm.v93i3.13103, PMID 35775753.

Pack SM, Peters PJ. SARS-CoV-2–specific vaccine candidates the contribution of structural vaccinology. Vaccines (Basel). 2022;10(2):236. doi: 10.3390/vaccines10020236, PMID 35214693.

Sabitha S, Shobana N, Prakash P, Padmanaban S, Sathiyashree M, Saigeetha S. A review of different vaccines and strategies to combat COVID-19. Vaccines (Basel). 2022;10(5):737. doi: 10.3390/vaccines10050737, PMID 35632493.

Centers for Disease Control and Prevention. CDC COVID-19 study shows mRNA vaccines reduce risk of infection by 91 percent for fully vaccinated people. USA. Gov; 2021. Available from: https://archive.cdc.gov/www_cdc_gov/media/releases/2021/p0607-mrna-reduce-risks.html [Last accessed on 10 Feb 2024].

Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview of the main antiSARS-CoV-2 vaccines mechanism of action efficacy and safety. Infect Drug Resist. 2021;14:3459-76. doi: 10.2147/IDR.S315727, PMID 34511939.

Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D. Cytosolic delivery of nucleic acids the case of ionizable lipid nanoparticles. Bioeng Transl Med. 2021;6(2):e10213. doi: 10.1002/btm2.10213, PMID 33786376.

Cheng F, Wang Y, Bai Y, Liang Z, Mao Q, Liu D. Research advances on the stability of mRNA vaccines. Viruses. 2023;15(3):668. doi: 10.3390/v15030668, PMID 36992377.

Ghanem AM. A review on recent advances in transdermal drug delivery systems of tamsulosin. Int J App Pharm. 2024;16:28-33. doi: 10.22159/ijap.2024v16i2.49950.

Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. doi: 10.1016/j.addr.2022.114416, PMID 35787388.

Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS. A comprehensive review of mRNA vaccines. Int J Mol Sci. 2023;24(3):2700. doi: 10.3390/ijms24032700, PMID 36769023.

Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078-94. doi: 10.1038/s41578-021-00358-0, PMID 34394960.

Swetha K, Kotla NG, Tunki L, Jayaraj A, Bhargava SK, Hu H. Recent advances in the lipid nanoparticle-mediated delivery of mRNA vaccines. Vaccines (Basel). 2023;11(3):658. doi: 10.3390/vaccines11030658, PMID 36992242.

Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles from liposomes to mRNA vaccine delivery a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982-7015. doi: 10.1021/acsnano.1c04996, PMID 34181394.

Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019;27(4):757-72. doi: 10.1016/j.ymthe.2019.01.020, PMID 30803823.

Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W. mRNA lipid nanoparticle COVID-19 vaccines structure and stability. Int J Pharm. 2021;601:120586. doi: 10.1016/j.ijpharm.2021.120586, PMID 33839230.

Wang YS, Kumari M, Chen GH, Hong MH, Yuan JP, Tsai JL. mRNA based vaccines and therapeutics an in depth survey of current and upcoming clinical applications. J Biomed Sci. 2023;30(1):84. doi: 10.1186/s12929-023-00977-5, PMID 37805495.

Nitika WJ, Wei J, Hui AM. The development of mRNA vaccines for infectious diseases recent updates. Infect Drug Resist. 2021;14:5271-85. doi: 10.2147/IDR.S341694, PMID 34916811.

Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol. 2023;14:1294929. doi: 10.3389/fimmu.2023.1294929, PMID 38090568.

Muhammed RA, Mohammed S, Visht S, Yassen AO. A review on development of colon targeted drug delivery system. Int J App Pharm. 2024;16:12-27. doi: 10.22159/ijap.2024v16i2.49293.

Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines past present and future directions in the context of the COVID-19 pandemic. Adv Drug Deliv Rev. 2021;179:114000. doi: 10.1016/j.addr.2021.114000, PMID 34637846.

Teo SP. Review of COVID-19 mRNA vaccines BNT162b2 and mRNA-1273. J Pharm Pract. 2022;35(6):947-51. doi: 10.1177/08971900211009650, PMID 33840294.

Cable J, Graham BS, Koup RA, Seder RA, Kariko K, Pardi N. Progress in vaccine development for infectious diseases a keystone symposia report. Ann N Y Acad Sci. 2023;1524(1):65-86. doi: 10.1111/nyas.14975, PMID 37020354.

Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyarto BZ. The mRNA-LNP platforms lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. IScience. 2021;24(12):103479. doi: 10.1016/j.isci.2021.103479, PMID 34841223.

Borkens Y. Malaria & mRNA vaccines a possible salvation from one of the most relevant infectious diseases of the global south. Acta Parasitol. 2023;68(4):916-28. doi: 10.1007/s11686-023-00712-y, PMID 37828249.

Yusuf Y, Yoshii T, Iyori M, Mizukami H, Fukumoto S, Yamamoto DS. A viral vectored multi stage malaria vaccine regimen with protective and transmission blocking efficacies. Front Immunol. 2019;10:2412. doi: 10.3389/fimmu.2019.02412, PMID 31681301.

Matarazzo L, Bettencourt PJ. mRNA vaccines a new opportunity for malaria tuberculosis and HIV. Front Immunol. 2023;14:1172691. doi: 10.3389/fimmu.2023.1172691, PMID 37168860.

Xie C, Yao R, Xia X. The advances of adjuvants in mRNA vaccines. NPJ Vaccines. 2023;8(1):162. doi: 10.1038/s41541-023-00760-5, PMID 37884526.

Lee SM, Wu CK, Plieskatt J, McAdams DH, Miura K, Ockenhouse C. Assessment of Pfs25 expressed from multiple soluble expression platforms for use as transmission-blocking vaccine candidates. Malar J. 2016;15(1):405. doi: 10.1186/s12936-016-1464-6, PMID 27515826.

Scaria PV, Roth N, Schwendt K, Muratova OV, Alani N, Lambert LE. mRNA vaccines expressing malaria transmission blocking antigens Pfs25 and Pfs230D1 induce a functional immune response. NPJ Vaccines. 2024;9(1):9. doi: 10.1038/s41541-023-00783-y, PMID 38184666.

Fotoran WL, da Silva JR, Glitz C, Ferreira LC, Wunderlich G. Establishment of an antiplasmodial vaccine based on PfRH5-encoding RNA replicons stabilized by cationic liposomes. Pharmaceutics. 2023;15(4):1223. doi: 10.3390/pharmaceutics15041223, PMID 37111706.

Zeng C, Zhang C, Walker PG, Dong Y. Formulation and delivery technologies for mRNA vaccines. Curr Top Microbiol Immunol. 2022;440:71-110. doi: 10.1007/82_2020_217, PMID 32483657.

Published

07-06-2024

How to Cite

IHEAGWAM, F. N., & ADEDOYIN, E. D. (2024). LEVERAGING THE SUCCESS OF MRNA LIPID NANOPARTICLE VACCINE IN COVID-19 TREATMENT: A NARRATIVE REVIEW ON ITS POTENTIAL APPLICATION IN MALARIA TREATMENT. International Journal of Applied Pharmaceutics, 16(5), 59–66. https://doi.org/10.22159/ijap.2024v16i5.50885

Issue

Section

Review Article(s)