INVESTIGATING THE ROLE OF NANOPARTICLE-BASED CURCUMIN IMPLANTS IN PREVENTION OF POST-LAPAROTOMY PERITONEAL ADHESION: AN IN VIVO STUDY
DOI:
https://doi.org/10.22159/ijap.2024v16i5.50976Keywords:
Curcumin, Peritoneal implant, Mesoporous silica nanoparticles, Controlled releaseAbstract
Objective: The objective of this research is to develop a controlled-release drug delivery system for relieving peritoneal adhesion. The system is designed to utilize a polymer hydrogel incorporating Curcumin (cur) loaded Mesoporous Silica Nanoparticles (Msn). Its objective is to improve the properties of curcumin and reduce peritoneal adhesion after laparoscopic surgery.
Methods: The rats in each group underwent intra-abdominal adhesion modeling surgery and received the following implants: implants containing Msn loaded with cur (imp/Msn@cur), Implants Containing Cur (imp/cur), implants containing Msn without cur (imp/Msn), Implants without Msn and cur (imp) and group only modeled (contrl). After 14 d, the surgical site was reopened and the specimens were evaluated by gross processing and histology staining for adhesion band formation, fibrosis, and inflammation. Data were analyzed by SPSS v.22 using Fisher's exact test, one-way ANOVA, and Tukey's test and P˂0.05 was considered statistically significant.
Results: The number of vascularized or non-vascularized adhesion bands was evaluated According to the results, the number of vascular bands in the control group was only significantly higher than the other groups (P<0.001). Also, the mean number of vascular adhesion bands in the imp group was significantly higher than the other intervention groups (P<0.001). All studied rats in the contrl group had adhesions and the severity of adhesions in this group was higher than the others. Also, in the imp/Msn@cur group, the severity of adhesion was the lowest than the other groups.
Conclusion: The research findings indicated that utilizing implants with cur-loaded Msn resulted in improved peritoneal adhesion and reduced collagen bandages following laparotomy.
Downloads
References
Monk BJ, Berman ML, Montz FJ. Adhesions after extensive gynecologic surgery: clinical significance, etiology, and prevention. Am J Obstet Gynecol. 1994;170(5 Pt 1):1396-403. doi: 10.1016/s0002-9378(94)70170-9, PMID 8178880.
Ellis H, Moran BJ, Thompson JN, Parker MC, Wilson MS, Menzies D. Adhesion-related hospital readmissions after abdominal and pelvic surgery: a retrospective cohort study. Lancet. 1999;353(9163):1476-80. doi: 10.1016/S0140-6736(98)09337-4, PMID 10232313.
Ten Broek RP, Issa Y, Van Santbrink EJ, Bouvy ND, Kruitwagen RF, Jeekel J. Burden of adhesions in abdominal and pelvic surgery: systematic review and met-analysis. BMJ. 2013;347:f5588. doi: 10.1136/bmj.f5588, PMID 24092941.
Lower AM, Hawthorn RJ, Emeritus HE, O’Brien F, Buchan S, Crowe AM. The impact of adhesions on hospital readmissions over ten years after 8849 open gynaecological operations: an assessment from the surgical and clinical adhesions research study. BJOG. 2000;107(7):855-62. doi: 10.1111/j.1471-0528.2000.tb11083.x.
Jomezadeh V, Mohammadpour AH, Rajabi O, Tavassoli A, Maddah G. Evaluation of curcumin effects on post-operative peritoneal adhesion in rats. Iran J Basic Med Sci. 2012;15(6):1162-7. PMID 23653845.
Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955-68. doi: 10.1016/j.ejca.2005.05.009, PMID 16081279.
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41(1):40-59. doi: 10.1016/j.biocel.2008.06.010, PMID 18662800.
Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1A):363-98. PMID 12680238.
Shishodia S, Sethi G, Aggarwal BB. Curcumin: getting back to the roots. Ann N Y Acad Sci. 2005;1056(1):206-17. doi: 10.1196/annals.1352.010, PMID 16387689.
Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets. 2011;12(3):332-47. doi: 10.2174/138945011794815356, PMID 20955148.
Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther. 2021;15:4503-25. doi: 10.2147/DDDT.S327378, PMID 34754179.
Akhlaghi S, Rabbani S, Karimi H, Haeri A. Hyaluronic acid gel incorporating curcumin-phospholipid complex nanoparticles prevents postoperative peritoneal adhesion. J Pharm Sci. 2023;112(2):587-98. doi: 10.1016/j.xphs.2022.10.022.
Türkoglu A, Gul M, Yuksel HK, Alabalik U, Ulger BV, Uslukaya O. Effect of intraperitoneal curcumin instillation on postoperative peritoneal adhesions. Med Princ Pract. 2015;24(2):153-8. doi: 10.1159/000369020, PMID 25504140.
Agustina R, Setyaningsih D. Solid dispersion as a potential approach to improve dissolution and bioavailability of curcumin from turmeric (curcuma longa L.). Int J App Pharm. 2023;15(5):37-47. doi: 10.22159/ijap.2023v15i5.48295.
Modasiya MK, Patel VM. Studies on solubility of curcumin. Int J Pharm Life Sci. 2012;3(3):1490-7.
Liong M, Lu J, Tamanoi F, Zink JI, Nel A. Mesoporous silica nanoparticles for biomedical applications; 2018.
Poorakbar E, Shafiee A, Saboury AA, Rad BL, Khoshnevisan K, Ma’mani L. Synthesis of magnetic gold mesoporous silica nanoparticles core-shell for cellulase enzyme immobilization: improvement of enzymatic activity and thermal stability. Process Biochem. 2018;71:92-100. doi: 10.1016/j.procbio.2018.05.012.
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother. 2019;109:1100-11. doi: 10.1016/j.biopha.2018.10.167, PMID 30551360.
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602-63. doi: 10.1021/acs.chemrev.5b00346, PMID 26854975.
Tang J, Xiang Z, Bernards MT, Chen S. Peritoneal adhesions: occurrence, prevention and experimental models. Acta Biomater. 2020;116:84-104. doi: 10.1016/j.actbio.2020.08.036, PMID 32871282.
Altememy D, Javdani M, Kaboli M. A, Amini Khoei H, Mehreganzadeh P, Driss F, Karimi M KP. Preparation and evaluation of slow-release mesoporous silica nanoparticles-curcumin implant for prevention of intra-abdominal adhesion. Lat Am J Pharm. 2024;43(5):1843-50.
Javanmardi S, Golmohammadi S, Mazaheri-Khamenei R. Evaluation of silymarin effects on post-operative peritoneal adhesion in rats. J Urmia Univ Med Sci. 2017;28:8.
Arjmand MH, Hashemzehi M, Soleimani A, Asgharzadeh F, Avan A, Mehraban S. Therapeutic potential of active components of saffron in post-surgical adhesion band formation. J Tradit Complement Med. 2021;11(4):328-35. doi: 10.1016/j.jtcme.2021.01.002, PMID 34195027.
Van Goor H. Consequences and complications of peritoneal adhesions. Colorectal Dis. 2007;9Suppl 2:25-34. doi: 10.1111/j.1463-1318.2007.01358.x, PMID 17824967.
Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. J Surg Res. 2011;165(1):91-111. doi: 10.1016/j.jss.2009.09.015, PMID 20036389.
Yeo Y, Adil M, Bellas E, Astashkina A, Chaudhary N, Kohane DS. Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J Control Release. 2007;120(3):178-85. doi: 10.1016/j.jconrel.2007.04.016.
Widiyanti P, Rudiardjo DI, Wibowo H, Hanum A. Hyaluronic acid-chitosan/AgNPs hydrogel green synthesis from curcuma longa as antibacterial anti intraperitoneal adhesion. J Int Dent Med Res. 2020;13(3):1204-10.
Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal. 2008;10(3):511-45. doi: 10.1089/ars.2007.1769, PMID 18370854.
Babadi D, Rabbani S, Akhlaghi S, Haeri A. Curcumin polymeric membranes for postoperative peritoneal adhesion: comparison of nanofiber vs. film and phospholipid-enriched vs. non-enriched formulations. Int J Pharm. 2022;614:121434. doi: 10.1016/j.ijpharm.2021.121434, PMID 34995747.
Guvenal T, Cetin A, Ozdemir H, Yanar O, Kaya T. Prevention of postoperative adhesion formation in rat uterine horn model by nimesulide: a selective COX-2 inhibitor. Hum Reprod. 2001;16(8):1732-5. doi: 10.1093/humrep/16.8.1732, PMID 11473974.
Portz DM, Elkins TE, White R, Warren J, Adadevoh S, Randolph J. Oxygen free radicals and pelvic adhesion formation: I. Blocking oxygen-free radical toxicity to prevent adhesion formation in an endometriosis model. Int J Fertil. 1991;36(1):39-42. PMID 1672675.
Aldemir M, Oztürk H, Erten C, Buyukbayram H. The preventive effect of rofecoxib in postoperative intraperitoneal adhesions. Acta Chir Belg. 2004;104(1):97-100. doi: 10.1080/00015458.2003.11978403, PMID 15053473.
Ammon HP, Safayhi H, Mack T, Sabieraj J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethnopharmacol. 1993;38(2-3):113-9. doi: 10.1016/0378-8741(93)90005-p, PMID 8510458.
Published
How to Cite
Issue
Section
Copyright (c) 2024 MOHAMMAD AMIN KABOLI, DHIYA ALTEMEMY, MOOSA JAVDANI, HOSSEIN AMINI KHOEI, PARISA MEHREGANZADEH, FATEMEH DRISS, MEHRDAD KARIMI, PEGAH KHOSRAVIAN
This work is licensed under a Creative Commons Attribution 4.0 International License.