THE BINARY AND TERNARY AMORPHOUS SYSTEMS OF CANDESARTAN CILEXETIL PREPARATION TO IMPROVE ITS SOLUBILITY

Authors

  • FIKRI ALATAS Pharmaceutics Group, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudiman, Cimahi, West Java-40521, Indonesia
  • HESTIARY RATIH Pharmaceutics Group, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudiman, Cimahi, West Java-40521, Indonesia
  • TITTA HARTYANA SUTARNA Pharmaceutics Group, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudiman, Cimahi, West Java-40521, Indonesia
  • MUHAMAD LUTHFI FAUZI Pharmaceutics Group, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudiman, Cimahi, West Java-40521, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i5.51141

Keywords:

Candesartan cilexetil, Polyvinylpyrrolidone K25, Amorphous, Solubility

Abstract

Objective: The objectives of this work was to prepare the binary and ternary amorphous systems of Candesartan cilextil (CAN), characterize these, and evaluate their influence on solubility.

Methods: CAN was prepared in three amorphous systems, namely Candesartan cilexetil-l-Arginine (CAN-ARG) binary Co-Amorphous System (CAMS), CAN with 10, 20, and 30% of Polyvinylpyrrolidone K25 (CAN-PVP K25) Amorphous Solid Dispersion (ASD), and CAN-ARG with 10, 20, and 30% of PVP K25 (CAN-ARG-PVP K25) ternary CAMS. All amorphous systems were characterized by polarizing microscopy and differential scanning calorimetry (DSC) methods, while the degree of crystallinity was calculated based on powder X-ray diffraction (PXRD) patterns. The solubility test of all amorphous systems of CAN was carried out respectively in water solvent (25±0.5 °C) and phosphate buffer solution with a pH of 6.5 that contained 0.70% polysorbate 20 at 37±0.5 °C.

Results: Polarization microscope images showed no birefringence in CAN-ARG and CAN-ARG-PVP K25 CAMS, but strong birefringence in CAN-PVP K25. DSC thermograms show the glass transition of CAN-ARG-PVP-K25 was in the range 101-120.8 °C higher than CAN-PVP-K25 (84.1-87.5 °C) and CAN-ARG (53.5 °C). The crystallinity degrees of CAN, CAN-ARG, CAN-PVP K25, and CAN-ARG-PVPK25 calculated based on powder X-ray diffractogram data were 73.68, 7.52, 17.20, and 0.02%, respectively. The order of solubility of CAN in water and phosphate buffer solution with a pH of 6.5 that contains 0.70% polysorbate 20 was CAN-ARG-PVP-K25>CAN-ARG>CAN-PVP-K25>CAN.

Conclusion: The synthesis of binary and ternary amorphous CAN has resulted in positive outcomes, enhancing its solubility.

Downloads

Download data is not yet available.

References

Riekes MK, Engelen A, Appeltans B, Rombaut P, Stulzer HK, Van Den Mooter G. New perspectives for fixed-dose combinations of poorly water-soluble compounds: a case study with ezetimibe and lovastatin. Pharm Res. 2016;33(5):1259-75. doi: 10.1007/s11095-016-1870-z, PMID 26857899.

Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B. 2019;9(1):19-35. doi: 10.1016/j.apsb.2018.08.002, PMID 30766775.

Laitinen R, Lobmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453(1):65-79. doi: 10.1016/j.ijpharm.2012.04.066, PMID 22569230.

Kanaujia P, Poovizhi P, Ng WK, Tan RB. Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technol. 2015;285:2-15. doi: 10.1016/j.powtec.2015.05.012.

Maleki A, Kettiger H, Schoubben A, Rosenholm JM, Ambrogi V, Hamidi M. Mesoporous silica materials: from physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J Control Release. 2017;262:329-47. doi: 10.1016/j.jconrel.2017.07.047, PMID 28778479.

Tekade AR, Yadav JN. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water-soluble drugs. Adv Pharm Bull. 2020;10(3):359-69. doi: 10.34172/apb.2020.044, PMID 32665894.

Mishra DK, Dhote V, Bhargava A, Jain DK, Mishra PK. Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications. Drug Deliv Transl Res. 2015;5(6):552-65. doi: 10.1007/s13346-015-0256-9, PMID 26306524.

Kim DH, Kim YW, Tin YY, Soe MT, Ko BH, Park SJ. Recent technologies for amorphization of poorly water-soluble drugs. Pharmaceutics. 2021;13(8):1318. doi: 10.3390/pharmaceutics13081318, PMID 34452279.

Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281-302. doi: 10.1002/JPS.2600600902, PMID 4935981.

Haser A, Zhang F. New strategies for improving the development and performance of amorphous solid dispersions. AAPS PharmSciTech. 2018;19(3):978-90. doi: 10.1208/s12249-018-0953-z, PMID 29340977.

Ji Y, Paus R, Prudic A, Lubbert C, Sadowski G. A novel approach for analyzing the dissolution mechanism of solid dispersions. Pharm Res. 2015;32(8):2559-78. doi: 10.1007/s11095-015-1644-z, PMID 25715696.

Srivastava A, Khan MA, Bedi S, Bhandari U. Design, optimization, and characterization of a novel amorphous solid dispersion formulation for enhancement of solubility and dissolution of ticagrelor. Int J App Pharm. 2023;15(4):296-305. doi: 10.22159/ijap.2023v15i4.47618.

Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):1-26. doi: 10.3390/pharmaceutics11030132, PMID 30893899.

Srinarong P, De Waard H, Frijlink HW, Hinrichs WL. Improved dissolution behavior of lipophilic drugs by solid dispersions: the production process as starting point for formulation considerations. Expert Opin Drug Deliv. 2011;8(9):1121-40. doi: 10.1517/17425247.2011.598147, PMID 21722000.

Dengale SJ, Grohganz H, Rades T, Lobmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev. 2016;100:116-25. doi: 10.1016/j.addr.2015.12.009, PMID 26805787.

Liu J, Grohganz H, Lobmann K, Rades T, Hempel NJ. Co-amorphous drug formulations in numbers: recent advances in co-amorphous drug formulations with focus on co-formability, molar ratio, preparation methods, physical stability, in vitro and in vivo performance, and new formulation strategies. Pharmaceutics. 2021;13(3). doi: 10.3390/pharmaceutics13030389, PMID 33804159.

Moinuddin SM, Ruan S, Huang Y, Gao Q, Shi Q, Cai B. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: enhanced physical stability, dissolution and pharmacokinetic profile. Int J Pharm. 2017;532(1):393-400. doi: 10.1016/j.ijpharm.2017.09.020, PMID 28893583.

Yarlagadda DL, Sai Krishna Anand V, Nair AR, Navya Sree KS, Dengale SJ, Bhat K. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int J Pharm. 2021;602:120649. doi: 10.1016/j.ijpharm.2021.120649.

Li F, Li L, Wang S, Yang Y, Li J, Liu D. Improved dissolution and oral absorption by co-grinding active drug probucol and ternary stabilizers mixtures with planetary beads-milling method. Asian J Pharm Sci. 2019;14(6):649-57. doi: 10.1016/j.ajps.2018.12.001, PMID 32104491.

Aljohani M, McArdle P, Erxleben A. Dual-drug amorphous formulation of gliclazide. Drug Dev Ind Pharm. 2021;47(2):302-7. doi: 10.1080/03639045.2021.1879838, PMID 33492999.

Fang X, Hu Y, Yang G, Shi W, Lu S, Cao Y. Improving physicochemical properties and pharmacological activities of ternary co-amorphous systems. Eur J Pharm Biopharm. 2022 Dec 1;181:22-35. doi: 10.1016/j.ejpb.2022.10.008, PMID 36283631.

Figueroa Campos A, Sanchez Dengra B, Merino V, Dahan A, Gonzalez Alvarez I, Garcia Arieta A. Candesartan cilexetil in vitro–in vivo correlation: predictive dissolution as a development tool. Pharmaceutics. 2020;12(7):633. doi: 10.3390/pharmaceutics12070633, PMID 32640620.

Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv. 2016;23(2):395-404. doi: 10.3109/10717544.2014.914986, PMID 24865287.

Alatas F, Mutmainah ES, Ratih H, Sutarna TH, Soewandhi SN. Identification of candesartan cilexetil-l-arginine co-amorphous formation and its solubility test. Borneo J Pharm. 2022;5(1):27-34. doi: 10.33084/bjop.v5i1.2942.

Kaushik R, Verma R, Budhwar V, Kaushik D. Investigation of solid dispersion approach for the improvement of pharmaceutical characteristics of telmisartan using a central composite design. Int J App Pharm. 2023;15(5):245-54. doi: 10.22159/ijap.2023v15i5.47968.

Pacult J, Rams Baron M, Chmiel K, Jurkiewicz K, Antosik A, Szafraniec J. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur J Pharm Sci. 2019;136:104947. doi: 10.1016/j.ejps.2019.06.001.

Ruponen M, Rusanen H, Laitinen R. Dissolution and permeability properties of co-amorphous formulations of hydrochlorothiazide. J Pharm Sci. 2020;109(7):2252-61. doi: 10.1016/j.xphs.2020.04.008, PMID 32315662.

Nguyen DN, Van Den Mooter G. The fate of ritonavir in the presence of Darunavir. Int J Pharm. 2014;475(1-2):214-26. doi: 10.1016/j.ijpharm.2014.08.062, PMID 25180992.

Liu X, Zhou L, Zhang F. Reactive melt extrusion to improve the dissolution performance and physical stability of naproxen amorphous solid dispersions. Mol Pharm. 2017;14(3):658-73. doi: 10.1021/acs.molpharmaceut.6b00960, PMID 28135108.

Kasten G, Lobo L, Dengale S, Grohganz H, Rades T, Lobmann K. In vitro and in vivo comparison between crystalline and co-amorphous salts of naproxen-arginine. Eur J Pharm Biopharm. 2018;132:192-9. doi: 10.1016/j.ejpb.2018.09.024, PMID 30266670.

Medarevic D, Cvijic S, Dobricic V, Mitric M, Djuris J, Ibric S. Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: in vitro-in silico approach. Eur J Pharm Sci. 2018;124:188-98. doi: 10.1016/j.ejps.2018.08.026, PMID 30144529.

Saberi A, Kouhjani M, Yari D, Jahani A, Asare Addo K, Kamali H. Development, recent advances, and updates in binary, ternary co-amorphous systems, and ternary solid dispersions. J Drug Deliv Sci Technol. 2023 Sep 1;86:1-26. doi: 10.1016/j.jddst.2023.104746.

Lu Q, Zografi G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res. 1998;15(8):1202-6. doi: 10.1023/a:1011983606606, PMID 9706050.

Doumeng M, Makhlouf L, Berthet F, Marsan O, Delbe K, Denape J. A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polym Test. 2021;93:1-10. doi: 10.1016/j.polymertesting.2020.106878.

Black DB, Lovering EG. Estimation of the degree of crystallinity in digoxin by X-ray and infrared methods. J Pharm Pharmacol. 1977;29(11):684-7. doi: 10.1111/j.2042-7158.1977.tb11435.x, PMID 22603.

Xuan ZY, Wang L Yang, Dai J kai, Liu F, Li Y Tuan, Wu Z Yong. The comparative study of cocrystal/salt in simultaneously improving solubility and permeability of acetazolamide. J Mol Struct. 2019;1184:225-32. doi: 10.1016/j.molstruc.2019.01.090.

Han J, Li L, Su M, Heng W, Wei Y, Gao Y. Deaggregation and crystallization inhibition by small amount of polymer addition for a co-amorphous curcumin-magnolol system. Pharmaceutics. 2021;13(10):1725. doi: 10.3390/pharmaceutics13101725, PMID 34684018.

Karagianni A, Kachrimanis K, Nikolakakis I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018;10(3):98. doi: 10.3390/pharmaceutics10030098, PMID 30029516.

Ainurofiq A, Mauludin R, Mudhakir D, Soewandhi SN. A novel desloratadine-benzoic acid co-amorphous solid: preparation, characterization, and stability evaluation. Pharmaceutics. 2018;10(3):85. doi: 10.3390/pharmaceutics10030085, PMID 29986403.

Ding F, Cao W, Wang R, Wang N, Li A, Wei Y. Mechanistic study on transformation of coamorphous baicalein-nicotinamide to its cocrystal form. J Pharm Sci. 2023 Feb 1;112(2):513-24. doi: 10.1016/j.xphs.2022.08.031, PMID 36150469.

Agrawal A, Dudhedia M, Deng W, Shepard K, Zhong L, Povilaitis E. Development of tablet formulation of amorphous solid dispersions prepared by hot melt extrusion using quality by design approach. AAPS PharmSciTech. 2016;17(1):214-32. doi: 10.1208/s12249-015-0472-0, PMID 26757898.

Matsunaga H, Eguchi T, Nishijima K, Enomoto T, Sasaoki K, Nakamura N. Solid-state characterization of candesartan cilexetil (TCV-116): crystal structure and molecular mobility. Chem Pharm Bull. 1999;47(2):182-6. doi: 10.1248/CPB.47.182.

De Mello Costa AR, Marquiafavel FS, De Oliveira Lima Leite Vaz MM, Rocha BA, Pires Bueno PC, Amaral PL. Quercetin-PVP K25 solid dispersions: preparation, thermal characterization and antioxidant activity. J Therm Anal Calorim. 2011;104(1):273-8. doi: 10.1007/s10973-010-1083-3.

Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8(5):1919-28. doi: 10.1021/mp2002973, PMID 21815614.

Alsalhi MS, Royall PG, Chan KL. Mechanistic study of the solubilization effect of basic amino acids on a poorly water-soluble drug. RSC Adv. 2022;12(30):19040-53. doi: 10.1039/d2ra02870k, PMID 35865577.

Published

07-09-2024

How to Cite

ALATAS, F., RATIH, . H., SUTARNA, T. H., & FAUZI, M. L. (2024). THE BINARY AND TERNARY AMORPHOUS SYSTEMS OF CANDESARTAN CILEXETIL PREPARATION TO IMPROVE ITS SOLUBILITY. International Journal of Applied Pharmaceutics, 16(5), 367–372. https://doi.org/10.22159/ijap.2024v16i5.51141

Issue

Section

Original Article(s)