ANALYTICAL METHOD DEVELOPMENT, VALIDATION AND SOLUBILITY ESTIMATION OF NICARDIPINE HCL IN VARIOUS OIL SOLVENTS, SURFACTANTS AND COSURFACTANTS

Authors

  • RAHUL Y. PAGAR Department of Pharmaceutics, K. B. H. S. S. Trust’s Institute of Pharmacy, Malegaon, Nashik-423105, Maharashtra, India https://orcid.org/0000-0002-4403-3096
  • AVINASH B. GANGURDE Department of Pharmaceutics, K. B. H. S. S. Trust’s Institute of Pharmacy, Malegaon, Nashik-423105, Maharashtra, India https://orcid.org/0000-0003-2674-7770

DOI:

https://doi.org/10.22159/ijap.2024v16i4.51264

Keywords:

Solubility, Bioavailability, Nicardipine HCl, Caprylic capric, Tween 80, Transcutol HP

Abstract

Objective: This study is focused on the development of an analytical method and the evaluation of the solubility of Nicardipine HCl (NHCL) in various oil solvents, surfactants, and cosurfactants using the saturated solubility determination method employing UV Spectrophotometry.

Methods: Lipophilic solvents such as Caprylic Capric, Soyabean oil, linseed oil, Coconut oil, Sunflower oil, Corn oil, Olive oil, Peanut oil, and Cottonseed oil were utilized, along with surfactants Tween 60 and Tween 80, and cosurfactants PEG 200 and Transcutol HP. Analytical validation parameters, including linearity and range, precision, limit of Detection (LOD), limit of Quantification (LOQ), ruggedness, robustness, and accuracy, were assessed according to the International Council for Harmonisation (ICH) guidelines. The solubility of NHCL in all of the aforementioned solvents was evaluated using the saturated solubility determination method.

Results: Linearity analysis revealed a linear relationship, determined by an R2 value between concentration and absorbance. Intra-day precision demonstrates method reliability, with all Percent Relative Standard Deviation (%RSD) values ranging between 0.8426 and 1.9417%. LOD and LOQ values ranged between 1.1478 and 8.1632 µg/ml and 3.4783 and 24.7368 µg/ml, respectively. Ruggedness analysis exhibited good control over external experimental factors, with %RSD between 0.3433 and 1.9183%. Robustness assessment demonstrated consistent performance even with slight changes in environmental conditions, with %RSD between 0.5450 and 1.6443%. Accuracy study indicated % recovery values between 98.53 and 100.89%, suggesting minimal interference from excipients in the formulation.

Conclusion: Caprylic Capric, as an oil/triglyceride, exhibited a solubility of 0.94 mg/ml. Tween-80, as a surfactant, showed a solubility of 23.58 mg/ml, and Transcutol HP, as a cosurfactant, demonstrated a solubility of 38.18 mg/ml for NHCL

Downloads

Download data is not yet available.

References

Singh BN, Josephson MA. Clinical pharmacology, pharmacokinetics, and hemodynamic effects of nicardipine. Am Heart J. 1990;119(2 Pt 2):427-34. doi: 10.1016/s0002-8703(05)80063-8, PMID 1967896.

Moursy NM, Afifi NN, Ghorab DM, El-Saharty Y. Formulation and evaluation of sustained release floating capsules of nicardipine hydrochloride. Pharmazie. 2003;58(1):38-43. PMID 12622251.

Sorkin EM, Clissold SP, Nicardipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in the treatment of angina pectoris, hypertension and related cardiovascular disorders. Drugs. 1987 Apr;33(4):296-345. doi: 10.2165/00003495-198733040-00002, PMID 3297616.

Selvam RP, Singh AK, Sivakumar T. Transdermal drug delivery systems for antihypertensive drugs-a review. Int J Pharm Biomed Res. 2010;1(1):1-8.

Elliott WJ, Ram CV. Calcium channel blockers. J Clin Hypertens (Greenwich). 2011;13(9):687-9. doi: 10.1111/j.1751-7176.2011.00513.x, PMID 21896151.

Chavda HV, Patel CN, Anand IS. Biopharmaceutics classification system. Syst Rev Pharm. 2010;1(1):62. doi: 10.4103/0975-8453.59514.

Charalabidis A, Sfouni M, Bergstrom C, Macheras P. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): beyond guidelines. Int J Pharm. 2019;566:264-81. doi: 10.1016/j.ijpharm.2019.05.041, PMID 31108154.

Mehta M, Polli JE, Seo P, Bhoopathy S, Berginc K, Kristan K. Drug Permeability-best practices for biopharmaceutics classification system (BCS)-based biowaivers: a workshop summary report. J Pharm Sci. 2023;112(7):1749-62. doi: 10.1016/j.xphs.2023.04.016, PMID 37142122.

Mehta S, Joseph NM, Feleke F, Palani S. Improving solubility of bcs class II drugs using solid dispersion: a review. J Drug Delivery Ther 2014;4(3):7-13. doi: 10.22270/jddt.v4i3.844.

Sarisaltik Yasin D, Teksin ZS. Biopharmaceutics classification system: evaluation on international guidelines and countries. J Lit Pharm Sci. 2018;7(2):160-74. doi: 10.5336/pharmsci.2018-61223.

Jindal K. Review on solubility: a mandatory tool for pharmaceuticals. Int Res J Pharm. 2017;8(11):11-5. doi: 10.7897/2230-8407.0811210, doi: 10.7897/2230-8407.0811210.

Kumar A, Rajesh M, Subramanian l. Solubility enhancement techniques: a comprehensive review. World J Bio Pharm Health Sci. 2023;13(3):141-9. doi: 10.30574/wjbphs.2023.13.3.0125.

Saxena C, Mishra GP. Comprehensive study about solubility enhancement techniques. IJBPAS. 2022;11(9). doi: 10.31032/IJBPAS/2021/11.9.6220.

Savjani KT, Gajjar AK, Savjani JK. ChemInform abstract: drug solubility: importance and enhancement techniques. ChemInform. 2013;44(26). doi: 10.1002/chin.201326246.

Coltescu AR, Butnariu M, Sarac I. The importance of solubility for new drug molecules. Biomed Pharmacol J. 2020;13(2):577-83. doi: 10.13005/bpj/1920. doi: 10.13005/bpj/1920.

Koch Weser J. Bioavailability of drugs (second of two parts). N Engl J Med. 1974;291(10):503-6. doi: 10.1056/NEJM197409052911005, PMID 4604153.

Stielow M, Witczynska A, Kubryn N, Fijałkowski L, Nowaczyk J, Nowaczyk A. The bioavailability of drugs-the current state of knowledge. Molecules. 2023;28(24):1-19. doi: 10.3390/molecules28248038, PMID 38138529.

Allam AN, El Gamal S, Naggar V. Bioavailability a pharmaceutical review. Int J Novel Drug Deliv Tech. 2011 Jan;1(1):77-93.

Patil D, Bachhav R, Gosavi D, Pagar R, Bairagi V. Formulation and evaluation of ezetimibe lyophilized dry emulsion tablets. J Drug Deliv Ther. 2019;9(3):630-5.

Gaidhani KA, Harwalkar M, Bhambere D, Nirgude PS. Lyophilization/freeze drying–a review. World J Pharm Res. 2015;4(8):516-43.

Pagar RY, Gangurde AB. Quality by design approach for development of lyophilized dry emulsion tablets (LDET). J Chem Health Risks. 2024;14(2):815-27.

Dhahir RK, Yassir AB, Al-Kotaji M, Rawas Qalaji M. Formulation and evaluation of olanzapine oral lyophilisates. Pharmakeftiki. 2024;36(1):64-79.

AlHusban F, Perrie Y, Mohammed AR. Formulation of multiparticulate systems as lyophilised orally disintegrating tablets. Eur J Pharm Biopharm. 2011;79(3):627-34. doi: 10.1016/j.ejpb.2011.05.014, PMID 21693189.

Shao H, Li B, Li H, Gao L, Zhang C, Sheng H. Novel strategies for solubility and bioavailability enhancement of bufadienolides. Molecules. 2021;27(1):51. doi: 10.3390/molecules27010051, PMID 35011278.

Corveleyn S, Remon JP. Formulation of a lyophilized dry emulsion tablet for the delivery of poorly soluble drugs. International Journal of Pharmaceutics. 1998;166(1):65-74. doi: 10.1016/S0378-5173(98)00024-6.

Maleque M, Hasan MR, Hossen F, Safi S. Development and validation of a simple UV spectrophotometric method for the determination of levofloxacin both in bulk and marketed dosage formulations. J Pharm Anal. 2012;2(6):454-7. doi: 10.1016/j.jpha.2012.06.004, PMID 29403782.

Ferraz RS, Mendonça EA, Silva JP, Cavalcanti IM, Lira Nogueira MC, Galdino SL. Validation of a UV-spectrophotometric analytical method for determination of LPSF/AC04 from inclusion complex and liposomes. Braz J Pharm Sci. 2015;51(1):183-91. doi: 10.1590/S1984-82502015000100018.

Pathade P, Sumrao A, Sonawane B, Shirode D, Shewale S, Shinde V. Development and validation of stability indicating UV spectrophotometric method for estimation of resveratrol in bulk and tablet dosage form. Int J Drug Deliv Technol. 2024;14(1):385-8. doi: 10.25258/ijddt.14.1.56.

Rajesh R. Stability-indicating RP-HPLC method development and validation for the analysis of doxepin hydrochloride in bulk and pharmaceutical dosage form. Int J Pharm Pharm Sci. 2024;16(4):27-35. doi: 10.22159/ijpps.2024v16i4.50126.

Bodke SS, Bhangale CJ, Bhandare SN. Stability indicating UPLC method for estimation of benazepril and hydrochlorothiazide in bulk and combined dosage form. Int J Pharm Pharm Sci. 2024;16(1):22-9. doi: 10.22159/ijpps.2024v16i1.49457.

Chauhan I, Singh L. Development and validation of a simple and cost-effective UV spectrophotometric method for quantifying linezolid. Int J App Pharm. 2024;16(3):211-6. doi: 10.22159/ijap.2024v16i3.50556.

Bhavya SK, Nandhini M. Simultaneous method development and validation of combined dosage form dapagliflozin and vildagliptin in bulk and combined tablet dosage form by UV spectrophotometer. Asian J Pharm Clin Res. 2024;17(4):53-9.

Jothula H, Navuluri S, Mulakayala NR. Stability based HPLC method for cyclophosphamide related substances in finished drug products: development and validation. Int J Curr Pharm Sci. 2024;16(3):42-51. doi: 10.22159/ijcpr.2024v16i3.4061.

Baka E, Comer JE, Takacs Novak K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J Pharm Biomed Anal. 2008;46(2):335-41. doi: 10.1016/j.jpba.2007.10.030, PMID 18055153.

Naik AD, Pai SP. Spectrophotometric method for estimation of linezolid in tablet formulation. Asian J Biomed Pharm Sci. 2013;3(21):4-6.

Nagaraju PT, Sreenivasa Rao M, Ravi Kumar C, Mabhasha D, Venu Gopal K, Murali Krishna NV. UV-spectrophotometric method development and validation for determination of linezolid in pharmaceutical dosage form. Res Rev J Pharm Anal. 2014;3(3):23-7.

Apridamayanti P, Pratiwi L, Sari R. The development and validation of analytical method for evaluating gallic acid in ethyl acetate fraction (eaf) of snedds formulation: quantitative analysis with in vitro assay. Int J App Pharm. 2024:57-65. doi: 10.22159/ijap.2024v16i2.49830.

Patil PN. HPLC method development-a review. SGVU J Pharm Res. 2017;2(1):243-60.

Snyder l, Kirkland J, Dolan J. Introduction to modern liquid chromatography. 3rd ed. John. NJ: Wileyandsonsinc; 2010.

Kaur T, Kaur S, Kaur P. Development and validation of UV spectrophotometric methods for determination of gemcitabine hydrochloride in bulk and polymeric nanoparticles. Int J App Pharm. 2017;9(5):60-5. doi: 10.22159/ijap.2017v9i5.19726.

Shirwar M, Birajdar S, Garad S, Kumbhar S. Development and validation of novel UV-visible spectrophotometric method for estimation of tepotinib in bulk and in pharmaceutical formulation. Int J Pharm Pharm Sci. 2023;15(9):32-6. doi: 10.22159/ijpps.2023v15i9.48431.

Singh S, Sharma N, Singla YP, Arora S. Development and validation of UV-spectrophotometric method for quantitative estimation of nefopam hydrochloride in polymethacrylate nanospheres. Int J Pharm Pharm Sci. 2015;8(1):414-9.

Swartz ME, Krull IS. Analytical method validation: accuracy in quantitation. LC GC N Am. 2005;23(1):46-52.

Published

07-07-2024

How to Cite

PAGAR, R. Y., & GANGURDE, A. B. (2024). ANALYTICAL METHOD DEVELOPMENT, VALIDATION AND SOLUBILITY ESTIMATION OF NICARDIPINE HCL IN VARIOUS OIL SOLVENTS, SURFACTANTS AND COSURFACTANTS. International Journal of Applied Pharmaceutics, 16(4), 190–198. https://doi.org/10.22159/ijap.2024v16i4.51264

Issue

Section

Original Article(s)