DESIGNING, DEVELOPMENT AND EVALUATION OF GASTRORETENTIVE FLOATING HBS SYSTEM OF METFORMIN: IN VITRO IN VIVO STUDIES

Authors

  • RADHESHYAM SAMANTA Department of Pharmacy, Patel College of Phrmacy, Madhyanchal Professional University, Bhopal-462044, Madhya Pradesh, India https://orcid.org/0009-0000-8145-8563
  • GAURAV TIWARI Department of Pharmacy, Patel College of Phrmacy, Madhyanchal Professional University, Bhopal-462044, Madhya Pradesh, India
  • NAVEEN GUPTA Department of Pharmacy, Patel College of Phrmacy, Madhyanchal Professional University, Bhopal-462044, Madhya Pradesh, India
  • DHARMENDRA SINGH RAJPUT Department of Pharmacy, Patel College of Phrmacy, Madhyanchal Professional University, Bhopal-462044, Madhya Pradesh, India

DOI:

https://doi.org/10.22159/ijap.2024v16i5.51674

Keywords:

Gastroretentive, Chitosan, Floating, HBS, FTIR

Abstract

Objective: The main objective of this study is to formulate, characterized and evaluate the Medium Molecular Mass Chitosan (MMMCH) – Xanthan Gum (XG) based polymeric carrier mediate of non-effervescent floating hydrodynamically Balanced System (HBS) capsule of metformin for developed stomach specific sustain drug delivery over a prolong periods of time.

Methods: Different capsules of metformin were formulated by physical blending of metformin with polymeric mixture to encapsulate in 000 a single unit hard gelatine capsule, than evaluate the different parameters like micromeritics properties, weight uniformity, drug content uniformity, in vitro drug release with their kinetics model, DSC and FTIR study, in vitro in vivo floating characteristic.

Results: After evaluating the characteristic properties, it was clearly indicated that excellent value ranges, coefficient of weight variation in between 1.39-2.06%, content uniformity of drug in between 98.23-100.05%, in vitro drug release in between 60–80 % after 12h that can follow Korsmeyer-Peppas model to release the drug no-fiction diffusion method. FTIR and DSC study exhibit no much more incompatibility between drug and polymer and formation of electrolyte complex help to sustaining release over a prolong periods of time. In vitro and in vivo floatation study, it was clearly indicated that all formulation (especially MC4) floated in gastric content more than 12h without any floating lag time and excellent in vivo buoyancy by the help of x ray images of animal model by replacing the drug with barium sulphate.

Conclusion: So this type of formulation showing great gastroretentive floating drug delivery system in future with another drugs for a prolong periods of time.

Downloads

Download data is not yet available.

References

Lou J, Duan H, Qin Q, Teng Z, Gan F, Zhou X. Advances in oral drug delivery systems: challenges and opportunities. Pharmaceutics. 2023;15(2):484. doi: 10.3390/pharmaceutics15020484, PMID 36839807.

Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in oral drug delivery. Front Pharmacol. 2021;12:618411. doi: 10.3389/fphar.2021.618411, PMID 33679401.

He S, Liu Z, Xu D. Advance in oral delivery systems for therapeutic protein. J Drug Target. 2019;27(3):283-91. doi: 10.1080/1061186X.2018.1486406, PMID 29952664.

Dhiman S, Philip N, Gurjeet Singh T, Babbar R, Garg N, Diwan V. An insight on novel approaches and perspectives for gastro-retentive drug delivery systems. Curr Drug Deliv. 2023;20(6):708-29. doi: 10.2174/1567201819666220819200236, PMID 35993477.

Bhandwdwalkar MJ, Dubal PS, Tupe AK, Mandrupkar SN. Review on gastroretentive drug delivery system. Asian J Pharm Clin Res. 2020;13(12):38-45. doi: 10.22159/ajpcr.2020.v13i12.37264.

Mohapatra PK, Satyavani CH, Sahoo S. The design and development of carvedilol gastroretentive floating drug delivery systems using hydrophilic polymers and in vitro characterization. Int J Pharm Pharm Sci. 2020;12(7):66-73. doi: 10.22159/ijpps.2020v12i7.38024.

Desai N, Purohit R. Development of novel high density gastroretentive multiparticulate pulsatile tablet of clopidogrel bisulfate using quality by design approach. AAPS PharmSciTech. 2017;18(8):3208-18. doi: 10.1208/s12249-017-0805-2, PMID 28550603.

Malakar J, Nayak AK. Floating bioadhesive matrix tablets of ondansetron HCL: optimization of hydrophilic polymer-blends. Asian J Pharm. 2013;7(4):174-83. doi: 10.4103/0973-8398.128886.

Nayak AK, Pal D. Trigonella foenum-graecum L. seed mucilage-gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydr Polym. 2014;107:31-40. doi: 10.1016/j.carbpol.2014.02.031, PMID 24702915.

Juthi AZ, Li F, Wang B, Alam MM, Talukder ME, Qiu B. pH-responsive super-porous hybrid hydrogels for gastroretentive controlled-release drug delivery. Pharmaceutics. 2023;15(3):816. doi: 10.3390/pharmaceutics15030816, PMID 36986676.

Muzzarelli RA. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym. 2009;77(1):1-9. doi: 10.1016/j.carbpol.2009.01.016.

Zhou Y, Gu N, Yang F. In situ microbubble-assisted, ultrasound-controlled release of superparamagnetic iron oxide nanoparticles from gastro-retentive tablets. Int J Pharm. 2020;586:119615. doi: 10.1016/j.ijpharm.2020.119615, PMID 32650114.

Siepmann J, Kranz H, Bodmeier R, Peppas NA. HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res. 1999;16(11):1748-56. doi: 10.1023/a:1018914301328, PMID 10571282.

Srinivas L, Sagar S. L, Srinivas, St Sagar, design, optimization and evluation of raft forming gastroretentive drug delivery system of lafutidine using box-behnken design. Int J App Pharm. 2022;14(1):266-74. doi: 10.22159/ijap.2022v14i1.43358.

Malakar J, Nayak AK, Goswami S. Use of response surface methodology in the formulation and optimization of bisoprolol fumarate matrix tablets for sustained drug release. ISRN Pharm. 2012;2012:730624. doi: 10.5402/2012/730624, PMID 23378933.

Ali J, Arora S, Ahuja A, Babbar AK, Sharma RK, Khar RK. Formulation and development of hydrodynamically balanced system for metformin: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2007 Aug;67(1):196-201. doi: 10.1016/j.ejpb.2006.12.015, PMID 17270409.

Rajora A, Nagpal K. A critical review on floating tablets as a tool for achieving better gastric retention. Crit Rev Ther Drug Carrier Syst. 2022;39(1):65-103. doi: 10.1615/CritRevTherDrugCarrierSyst.2021038568, PMID 34936318.

Dubey J, Verma A, Verma N. Evaluation of chitosan based polymeric matrices for sustained stomach specific delivery of propranolol hydrochloride. Indian J Mater Sci. 2015;2015:1-9. doi: 10.1155/2015/312934.

Nayak AK, Das B, Maji R. Gastroretentive hydrodynamically balanced systems of ofloxacin: in vitro evaluation. Saudi Pharm J. 2013;21(1):113-7. doi: 10.1016/j.jsps.2011.11.002, PMID 23960825.

Raju DB, Sreenivas R, Varma MM. Formulation and evaluation of floating drug delivery system of metformin hydrochloride. J Chem Res. 2010;2(2):274-8.

Verma A, Bansal AK, Ghosh A, Pandit JK. Low molecular mass chitosan as carrier for a hydrodynamically balanced system for sustained delivery of ciprofloxacin hydrochloride. Acta Pharm. 2012;62(2):237-50. doi: 10.2478/v10007-012-0013-2, PMID 22750821.

Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83-99. doi: 10.1016/j.addr.2009.07.019, PMID 19799949.

Verma A, Dubey J, Verma N, Nayak AK. Chitosan-hydroxypropyl methylcellulose matrices as carriers for hydrodynamically balanced capsules of moxifloxacin HCl. Curr Drug Deliv. 2017;14(1):83-90. doi: 10.2174/1567201813666160504100842, PMID 27142106.

Azad AK, Bhattacharya T, Hasnain MS, Tripathi G, Nayak AK. Chitin and chitosan-based nanomaterials for therapeutic applications. In: Hasnain MS, Nayak AK, Aminabhavi TM, editors. Polymeric nanosystems, theranostic nanosystems, academic press. Vol. 1. Elsevier Inc.; 2023. p. 173-205.

Gugulothu D, Choudhary SK. Design and in vitro evaluation of floating drug delivery system of glipizide using combination of natural mucilages and synthetic polymers. Int J Pharm Pharm Sci. 2021;13(7):40-8. doi: 10.22159/ijpps.2021v13i7.41644.

Peers S, Montembault A, Ladaviere C. Chitosan hydrogels for sustained drug delivery. J Control Release. 2020;326:150-63. doi: 10.1016/j.jconrel.2020.06.012, PMID 32562854.

Patel J, Maji B, Moorthy NS, Maiti S. Xanthan gum derivatives: review of synthesis, properties and diverse applications. RSC Adv. 2020;10(45):27103-36. doi: 10.1039/D0RA04366D, PMID 35515783.

Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B. Novel interpenetrating network microspheres of xanthan gum-poly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine–in vitro and in vivo evaluation. Drug Deliv. 2010;17(7):508-19. doi: 10.3109/10717544.2010.483256, PMID 20482471.

Reddy MS, Begum Z. Formulation and in vitro evaluation of gastroretentive in situ floating gels of telmisarten cubosomes. Int J Curr Pharm Sci. 2022;14(1):44-53. doi: 10.22159/ijcpr.2022v14i1.44111.

Malakar J, Datta PK, Purakayastha SD, Dey S, Nayak AK. Floating capsules containing alginate-based beads of salbutamol sulfate: in vitro-in vivo evaluations. Int J Biol Macromol. 2014;64:181-9. doi: 10.1016/j.ijbiomac.2013.11.014, PMID 24296401.

Published

07-09-2024

How to Cite

SAMANTA, R., TIWARI, G., GUPTA, N., & RAJPUT, D. S. (2024). DESIGNING, DEVELOPMENT AND EVALUATION OF GASTRORETENTIVE FLOATING HBS SYSTEM OF METFORMIN: IN VITRO IN VIVO STUDIES. International Journal of Applied Pharmaceutics, 16(5), 258–265. https://doi.org/10.22159/ijap.2024v16i5.51674

Issue

Section

Original Article(s)