MUNTINGIA CALABURA SILVER NANOPARTICLES DETERIORATE OXIDATIVE IMPAIRMENT WITH POTENT ANTIBACTERIAL ACTIVITY

Authors

  • SIDHRA SYED ZAMEER AHMED Department of Biotechnology, K. S. Rangasamy College of Technology, K. S. R. Kalvinagar, Tiruchengode-637215, Tamil Nadu, India
  • SYED ZAMEER AHMED KHADER Department of Biotechnology, K. S. Rangasamy College of Technology, K. S. R. Kalvinagar, Tiruchengode-637215, Tamil Nadu, India
  • ELAYABARATHI MURUGESAN VALLIAMMAL Department of Biotechnology, K. S. Rangasamy College of Technology, K. S. R. Kalvinagar, Tiruchengode-637215, Tamil Nadu, India
  • SUNFIYA RAFEEK ALI Department of Biotechnology, K. S. Rangasamy College of Technology, K. S. R. Kalvinagar, Tiruchengode-637215, Tamil Nadu, India
  • MOTHEES SENTHILKUMAR Department of Biotechnology, K. S. Rangasamy College of Technology, K. S. R. Kalvinagar, Tiruchengode-637215, Tamil Nadu, India
  • MOHANAPRIYA VENKATACHALAM Department of Biotechnology, K. S. Rangasamy College of Technology, K. S. R. Kalvinagar, Tiruchengode-637215, Tamil Nadu, India
  • NILAVENDAN SARAVANAN Department of Biotechnology, K. S. Rangasamy College of Technology, K. S. R. Kalvinagar, Tiruchengode-637215, Tamil Nadu, India
  • DEEPTHY SENTHILKUMARAN Department of Biotechnology, K. S. Rangasamy College of Technology, K. S. R. Kalvinagar, Tiruchengode-637215, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51711

Keywords:

Silver nanoparticles, Antioxidant, Antimicrobial

Abstract

Objective: The current study exemplifies the synthesis of silver nanoparticles using Muntingia calabura L. (Mc-AgNP’s) fruit extract utilizing a green approach and testing the efficacy of synthesized NP’s.

Methods: The green synthesize approach was used to synthesis Mc-AgNP’s followed by characterization using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX), and Field Emission Scanning Electron Microscopy (FESEM). Radical scavenging activity was assessed using DPPH, FRAP, and H202, followed by antibacterial activity.

Results: The characteristic features of synthesized Muntingia calabura silver nanoparticles (Mc-AgNP’s) were analyzed using FT-IR which particularizes different functional groups with a broadband at 3408 cm-1 representing hydroxyl (-OH) stretching a peak at 1593.27 cm-1 corresponds to C = O groups in amide whereas a dip at 1383 cm-1 represents C-N amine and C-O stretching of alcohol groups were found. The Crystallinity of synthesized Mc-AgNP’s exhibited face-centered cubic (fcc) crystalline structure and the bio-reduction of the silver ions in solution was monitored by Energy dispersive X-ray spectroscopy (EDX). The FESEM analysis indicates that Mc-AgNP’s were dispersed in the solution using micrographs and the size ranged from 10 to 60 nm. The synthesized Mc-AgNP’s efficiently scavenged free radicals in a dose-dependent manner with 69% for DPPH, 59.9% for FRAP, and 64% for H202 respectively. Further, the synthesized Mc-AgNP’s demonstrated a potent antimicrobial agent against tested bacterial and fungal strains with a maximum zone of inhibition observed in S. aureus, K. pneumonia, and P. vulgaris with 14.6, 13.8, and 12.4 mm. Similarly, antifungal activity with Trichoderma harzianum demonstrated the highest zone with 18 mm followed by Aspergillus oryzae with 7 mm.

Conclusion: These results highlight the interesting potential of synthesized Mc-AgNP’s as an effective source of bioactive compounds with potent antioxidant and antibacterial activity.

Downloads

Download data is not yet available.

References

Malik S, Muhammad K, Waheed Y. Nanotechnology: a revolution in modern industry. Molecules. 2023;28(2):661. doi: 10.3390/molecules28020661, PMID 36677717.

Burlec AF, Corciova A, Boev M, Batir Marin D, Mircea C, Cioanca O. Current overview of metal nanoparticles synthesis characterization and biomedical applications with a focus on silver and gold nanoparticles. Pharmaceuticals (Basel Switzerland). 2023;16(10):1410. doi: 10.3390/ph16101410, PMID 37895881.

Dawadi S, Katuwal S, Gupta A, Lamichhane U, Thapa R, Jaisi S. Current research on silver nanoparticles: synthesis characterization and applications. J Nanomater. 2021;2021:1-23. doi: 10.1155/2021/6687290.

Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods properties recent progress and challenges. Mater Adv. 2021;2(6):1821-71. doi: 10.1039/D0MA00807A.

Wang N, Fuh JY, Dheen ST, Senthil Kumar A. Synthesis methods of functionalized nanoparticles: a review. Bio Des Manuf. 2021;4(2):379-404. doi: 10.1007/s42242-020-00106-3.

Krebs J, MC Keague M. Green toxicology: connecting green chemistry and modern toxicology. Chem Res Toxicol. 2020;33(12):2919-31. doi: 10.1021/acs.chemrestox.0c00260, PMID 33216543.

Crawford SE, Hartung T, Hollert H, Mathes B, Van Ravenzwaay B, Steger-Hartmann T. Green toxicology: a strategy for sustainable chemical and material development. Environ Sci Eur. 2017;29(1):16. doi: 10.1186/s12302-017-0115-z, PMID 28435767.

Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 2021;11(5):2804-37. doi: 10.1039/d0ra09941d, PMID 35424248.

Campana AL, Saragliadis A, Mikheenko P, Linke D. Insights into the bacterial synthesis of metal nanoparticles. Front Nanotechnol. 2023 Aug 10;5. doi: 10.3389/fnano.2023.1216921.

Sarojini S, Mounika B. Muntingia calabura (Jamaica cherry): an overview. Pharmatutor. 2018 Jan;6(11):1. doi: 10.29161/PT.v6.i11.2018.1.

Alharbi NS, Alsubhi NS. Silver nanoparticles biosynthesized using Azadirachta indica fruit and leaf extracts: optimization characterization and anticancer activity. J Nanomater. 2023;2023:1-17. doi: 10.1155/2023/9916777.

Preethi K, Vijayalakshmi N, Shamna R, Sasikumar JM. In vitro antioxidant activity of extracts from fruits of Muntingia calabura linn. From India. Pharmacognosy Journal. 2010;2(14):11-8. doi: 10.1016/S0975-3575(10)80065-3.

Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2016;58:36-43. doi: 10.1016/j.msec.2015.08.018, PMID 26478284.

Gupta P, Khader SZ, Syed Zameer Ahmed S, Kaliyannan Rajavel A, Sawant S, Manickam P. Exploration of the aptitude to alleviate oxidative impairment and curb colorectal cancer manifestation by Nostoc calcicola in HT-29 adenocarcinoma cells. Futur J Pharm Sci. 2023;9(1):102. doi: 10.1186/s43094-023-00557-2.

Khader SZ, Ahmed SS, Arunachalam T, Nayaka S, Balasubramanian SK, Syed Ameen ST. Radical scavenging potential antiinflammatory and antiarthritic activity of isolated isomer methyl-γ-orsellinate and roccellatol from Roccella montagnei bel. Bull Fac Pharm Cairo Univ. 2018;56(1):39-45. doi: 10.1016/j.bfopcu.2018.02.001.

Halliwell B, Clement MV, Ramalingam J, Long LH. Hydrogen peroxide. Ubiquitous in cell culture and in vivo. IUBMB Life. 2000;50(4-5):251-7. doi: 10.1080/713803727, PMID 11327318.

Wang LC, Yuan Y, Zhang Y, WU XF. Cobalt catalyzed aminoalkylative carbonylation of alkenes toward direct synthesis of γ-amino acid derivatives and peptides. Nat Commun. 2023;14(1):7439. doi: 10.1038/s41467-023-43306-y, PMID 37978196.

Trung TT, Van Cuong N, Hong LT, Quynh NT, Van DU C. Study on synthesizing silver nanoparticles by using Muntingia calabura leaf extract: insights from experimental and theoretical studies. Vietnam Journal of Chemistry. 2021;59(5):606-11. doi: 10.1002/vjch.202100012.

Dickinson C, Sujoy DK, Fathima Lafir DBF, Marsili E. Synthesis characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012;14:1322–34. doi: 10.1039/C2GC16676C.

Kingslin A, Kalimuthu K, Kiruthika ML, Khalifa AS, Nhat PT, Brindhadevi K. Synthesis characterization and biological potential of silver nanoparticles using Enteromorpha prolifera algal extract. Appl Nanosci. 2023;13(3):2165-78. doi: 10.1007/s13204-021-02105-x.

Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K. Reactive oxygen species toxicity oxidative stress and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-574. doi: 10.1007/s00204-023-03562-9, PMID 37597078.

Yamauchi M, Kitamura Y, Nagano H, Kawatsu J, Gotoh H. DPPH measurements and structure-activity relationship studies on the antioxidant capacity of phenols. Antioxidants (Basel Switzerland). 2024;13(3):309. doi: 10.3390/antiox13030309, PMID 38539842.

Raju SK, Karunakaran A, Kumar S, Sekar P, Murugesan M, Karthikeyan M. Biogenic synthesis of copper nanoparticles and their biological applications: an overview. Int J Pharm Pharm Sci. 2022;14(3):8-26. doi: 10.22159/ijpps.2022v14i3.43842.

Mansoor S, Zahoor I, Baba TR, Padder SA, Bhat ZA, Koul AM. Fabrication of silver nanoparticles against fungal pathogens. Front Nanotechnol. 2021;3. doi: 10.3389/fnano.2021.679358.

Akila RM, Maria Shaji D. Ginger loaded chitosan nanoparticles for the management of 3-nitropropionic acid-induced huntingtons disease-like symptoms in male Wistar rats. Int J Pharm Pharm Sci. 2022;14(1):28-36. doi: 10.22159/ijpps.2022v14i1.42894.

Published

07-11-2024

How to Cite

AHMED, S. S. Z., KHADER, S. Z. A., VALLIAMMAL, E. M., ALI, S. R., SENTHILKUMAR, M., VENKATACHALAM, M., SARAVANAN, N., & SENTHILKUMARAN, D. (2024). MUNTINGIA CALABURA SILVER NANOPARTICLES DETERIORATE OXIDATIVE IMPAIRMENT WITH POTENT ANTIBACTERIAL ACTIVITY. International Journal of Applied Pharmaceutics, 16(6), 340–344. https://doi.org/10.22159/ijap.2024v16i6.51711

Issue

Section

Original Article(s)