OPTIMIZED SOLID LIPID NANOPARTICLES FOR ENHANCED ORAL BIOAVAILABILITY AND OSTEOGENIC EFFECT OF IPRIFLAVONE: FORMULATION, CHARACTERIZATION, AND IN VITRO EVALUATION
DOI:
https://doi.org/10.22159/ijap.2024v16i6.51890Keywords:
Ipriflavone, Solid lipid nanoparticles, Osteoporosis, BioavailabilityAbstract
Objective: This study aimed to enhance the oral bioavailability of Ipriflavone (IP) and evaluate its osteogenic effect on human osteosarcoma cells (MG-63) by developing Ipriflavone-loaded Solid Lipid Nanoparticles (IP-SLN).
Methods: IP-SLNs were prepared using a modified solvent evaporation method with probe sonication. Formulation optimization employed Central Composite Design (CCD) with independent variables, including lipid amount, surfactant concentration, and sonication time. Characterization was performed using Transmission Electron Microscopy (TEM). In vitro drug release and ex vivo permeation studies were conducted to assess drug release kinetics and bioavailability. Cytotoxicity, Alkaline Phosphatase (ALP) activity, and calcium deposition studies on MG-63 cells evaluated osteogenic effects.
Results: TEM images showed round particles with an average diameter of 43.24±3 nm, a zeta potential of-9.53 mV, and a drug entrapment efficiency of 76.53±1.84%. In vitro drug release from IP-SLN was 79.02% compared to 14.21% from IP after 48 h, following the Korsmeyer-Peppas model and first-order kinetics. Ex vivo permeation of IP-SLN was approximately 2-fold higher than IP dispersion. Cytotoxicity studies revealed no toxicity on MG-63 cells. ALP activity and calcium deposition studies indicated that IP-SLN stimulated osteoblast differentiation, increasing alkaline phosphatase activity and mineralization. Pharmacokinetic studies demonstrated that IP-SLN increased the relative bioavailability by 515% compared to ipriflavone.
Conclusion: IP-SLN formulations significantly improved the oral bioavailability and osteogenic effects of ipriflavone on MG-63 cells, suggesting potential for novel therapeutic applications in osteoporosis treatment.
Downloads
References
Martini M, Formigli L, Tonelli P, Giannelli M, Amunni F, Naldi D. Effects of ipriflavone on perialveolar bone formation. Calcif Tissue Int. 1998 Oct;63(4):312-9. doi: 10.1007/s002239900533, PMID 9744990.
Bonucci E, Ballanti P, Martelli A, Mereto E, Brambilla G, Bianco P. Ipriflavone inhibits osteoclast differentiation in parathyroid transplanted parietal bone of rats. Calcif Tissue Int. 1992 Apr;50(4):314-9. doi: 10.1007/BF00301628, PMID 1571842.
John A, V AN, Konkodi K. Revisiting ipriflavone: a potential isoflavone for the management of postmenopausal osteoporosis. Rev Bras Farmacogn. 2021 Dec 1;31(6):733-40. doi: 10.1007/s43450-021-00192-z.
Dudhani AR, Kosaraju SL. Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohydr Polym. 2010 Jun 11;81(2):243-51. doi: 10.1016/j.carbpol.2010.02.026.
Bhatia S. Nanoparticles types classification characterization fabrication methods and drug delivery applications. Nat Polym Drug Deliv Syst. 2016 Sep:33-93. doi: 10.1007/978-3-319-41129-3_2.
Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007;2(4):743-9. PMID 18203440.
Sailaja A Krishna, Amareshwar P, Chakravarty P. Formulation of solid lipid nanoparticles and their applications. CPR. 2011;1(2):197-203.
Mirchandani Y, Patravale VB, SB. Solid lipid nanoparticles for hydrophilic drugs. J Control Release. 2021 Jul 10;335:457-64. doi: 10.1016/j.jconrel.2021.05.032, PMID 34048841.
Bhatt S, Sharma J, Singh M, Saini V. Solid lipid nanoparticles: a promising technology for delivery of poorly water-soluble drugs. Acta Pharm Sci. 2018;56(3):27-49. doi: 10.23893/1307-2080.APS.05616.
Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci. 2017 Feb 1;7(1-2):47-57. doi: 10.1007/s13204-017-0547-1.
Liu D, Jiang S, Shen H, Qin S, Liu J, Zhang Q. Diclofenac sodium loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. J Nanopart Res. 2011 Jun;13(6):2375-86. doi: 10.1007/s11051-010-9998-y.
Harsha SN, Aldhubiab BE, Nair AB, Alhaider IA, Attimarad M, Venugopala KN. Nanoparticle formulation by Buchi b-90 nano spray dryer for oral mucoadhesion. Drug Des Devel Ther. 2015 Jan 23;9:273-82. doi: 10.2147/DDDT.S66654, PMID 25670882.
Obinu A, Burrai GP, Cavalli R, Galleri G, Migheli R, Antuofermo E. Transmucosal solid lipid nanoparticles to improve genistein absorption via intestinal lymphatic transport. Pharmaceutics. 2021 Feb 1;13(2):1-17. doi: 10.3390/pharmaceutics13020267, PMID 33669306.
Shah I, Vyas J. Role of P-GP inhibitors on gut permeation of metformin: an ex-vivo study. Int J Pharm Pharm Sci. 2022 Oct 1:14(10)18-23. doi: 10.22159/ijpps.2022v14i10.45135.
Kim SE, Yun YP, Park K, Kim HJ, Lee DW, Kim JW. The effects of functionalized titanium with alendronate and bone morphogenic protein-2 for improving osteoblast activity. Tissue Eng Regen Med. 2013;10(6):353-61. doi: 10.1007/s13770-013-1098-5.
Serguienko A, Wang MY, Myklebost O. Real-time vital mineralization detection and quantification during in vitro osteoblast differentiation. Biol Proced Online. 2018 Aug 1;20(1):14. doi: 10.1186/s12575-018-0079-4, PMID 30078998.
Wei B, Wang W, Liu X, XU C, Wang Y, Wang Z. Gelatin methacrylate hydrogel scaffold carrying resveratrol loaded solid lipid nanoparticles for enhancement of osteogenic differentiation of BMSCs and effective bone regeneration. Regen Biomater. 2021 Aug 9;8(5):rbab044. doi: 10.1093/rb/rbab044, PMID 34394955.
WU S, Wang G, LU Z, LI Y, Zhou X, Chen L. Effects of glycerol monostearate and tween 80 on the physical properties and stability of recombined low-fat dairy cream. Dairy Sci Technol. 2016 Mar 1;96(3):377-90. doi: 10.1007/s13594-015-0274-x.
Ahmad N, Banala VT, Kushwaha P, Karvande A, Sharma S, Tripathi AK. Quercetin loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: a preventive strategy for post-menopausal osteoporosis. RSC Adv. 2016 Oct 12;6(100):97613-28. doi: 10.1039/C6RA17141A.
Kasongo KW, Pardeike J, Muller RH, Walker RB. Selection and characterization of suitable lipid excipients for use in the manufacture of didanosine-loaded solid lipid nanoparticles and nanostructured lipid carriers. J Pharm Sci. 2011;100(12):5185-96. doi: 10.1002/jps.22711, PMID 22020815.
Varshosaz J, Ghaffari S, Khoshayand MR, Atyabi F, Azarmi S, Kobarfard F. Development and optimization of solid lipid nanoparticles of amikacin by central composite design. J Liposome Res. 2010 Jun;20(2):97-104. doi: 10.3109/08982100903103904, PMID 19621981.
Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci. 2017 Feb 1;7(1-2):47-57. doi: 10.1007/s13204-017-0547-1.
Subair TK, Mohanan J. Development of nano-based film forming gel for prolonged dermal delivery of luliconazole. Int J Pharm Pharm Sci. 2022 Feb 1:14(2):31-41. doi: 10.22159/ijpps.2022v14i2.43253.
El Assal MI, Samual D. Optimization of rivastigmine chitosan nanoparticles for neurodegenerative alzheimers; in vitro and ex vivo characterizations. Int J Pharm Pharm Sci. 2022 Jan 1:14(1):17-27. doi: 10.22159/ijpps.2022v14i1.43145.
Charumathy A, Ubaidulla U, Sinha P, Rathnam G. Recent update on liposome-based drug delivery system. Int J Curr Pharm Sci. 2022 May 15:14(3):22-7. doi: 10.22159/ijcpr.2022v14i3.1991.
Obinu A, Burrai GP, Cavalli R, Galleri G, Migheli R, Antuofermo E. Transmucosal solid lipid nanoparticles to improve genistein absorption via intestinal lymphatic transport. Pharmaceutics. 2021 Feb 16;13(2):267. doi: 10.3390/pharmaceutics13020267, PMID 33669306.
SHAH I, VYAS J. Role of P-GP inhibitors on gut permeation of metformin: an ex-vivo study. Int J Pharm Pharm Sci. 2022 Oct 1:14(10):18-23. doi: 10.22159/ijpps.2022v14i10.45135.
SHAH I, VYAS J. Role of P-GP inhibitors on gut permeation of metformin: an ex-vivo study. Int J Pharm Pharm Sci. 2022 Oct 1:18-23.
Alghazwani Y, Venkatesan K, Prabahar K, El Sherbiny M, Elsherbiny N, Qushawy M. The combined anti-tumor efficacy of bioactive hydroxyapatite nanoparticles loaded with altretamine. Pharmaceutics. 2023 Jan 1;15(1):302. doi: 10.3390/pharmaceutics15010302, PMID 36678930.
Kim SE, Yun YP, Park K, Kim HJ, Lee DW, Kim JW. The effects of functionalized titanium with alendronate and bone morphogenic protein-2 for improving osteoblast activity. Tissue Eng Regen Med. 2013 Nov 13;10(6):353-61. doi: 10.1007/s13770-013-1098-5.
Kim SE, Yun YP, Park K, Kim HJ, Lee DW, Kim JW. The effects of functionalized titanium with alendronate and bone morphogenic protein-2 for improving osteoblast activity. Tissue Eng Regen Med. 2013 Nov 13;10(6):353-61. doi: 10.1007/s13770-013-1098-5.
Serguienko A, Wang MY, Myklebost O. Real-time vital mineralization detection and quantification during in vitro osteoblast differentiation. Biol Proced Online. 2018 Aug 1;20(1):14. doi: 10.1186/s12575-018-0079-4, PMID 30078998.
Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin Red based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004 Jun 1;329(1):77-84. doi: 10.1016/j.ab.2004.02.002, PMID 15136169.
Ravi GS, Charyulu RN, Dubey A, Prabhu P, Hebbar S, Mathias AC. Nano lipid complex of rutin: development characterisation and in vivo investigation of hepatoprotective antioxidant activity and bioavailability study in rats. AAPS Pharm Sci Tech. 2018 Nov 1;19(8):3631-49. doi: 10.1208/s12249-018-1195-9, PMID 30280357.
Duong VA, Nguyen TT, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules. 2020 Oct 18;25(20):4781. doi: 10.3390/molecules25204781, PMID 33081021.
Kumar R, Yasir M, Saraf SA, Gaur PK, Kumar Y, Singh AP. Glyceryl monostearate based nanoparticles of mefenamic acid: fabrication and in vitro characterization. Drug Invent Today. 2013 Sep 1;5(3):246-50. doi: 10.1016/j.dit.2013.06.011.
WU S, Wang G, LU Z, LI Y, Zhou X, Chen L. Effects of glycerol monostearate and tween 80 on the physical properties and stability of recombined low-fat dairy cream. Dairy Sci Technol. 2016 Mar 1;96(3):377-90. doi: 10.1007/s13594-015-0274-x.
Chen X, Wang T. Preparation and characterization of atrazine loaded biodegradable PLGA nanospheres. J Integr Agric. 2019 May 1;18(5):1035-41. doi: 10.1016/S2095-3119(19)62613-4.
Helgason T, Awad TS, Kristbergsson K, McClements DJ, Weiss J. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Colloid Interface Sci. 2009 Jun 1;334(1):75-81. doi: 10.1016/j.jcis.2009.03.012, PMID 19380149.
Nazarova A, Yakimova L, Filimonova D, Stoikov I. Surfactant effect on the physicochemical characteristics of solid lipid nanoparticles based on pillar[5]arenes. Int J Mol Sci. 2022 Jan 1;23(2):779. doi: 10.3390/ijms23020779, PMID 35054962.
Kato K, Walde P, Koine N, Ichikawa S, Ishikawa T, Nagahama R. Temperature-sensitive nonionic vesicles prepared from span 80 (sorbitan monooleate). Langmuir. 2008 Oct 7;24(19):10762-70. doi: 10.1021/la801581f, PMID 18720959.
YU Z, Fan W, Wang L, QI J, LU Y, WU W. Effect of surface charges on oral absorption of intact solid lipid nanoparticles. Mol Pharm. 2019;16(12):5013-24. doi: 10.1021/acs.molpharmaceut.9b00861, PMID 31638827.
Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011 Nov;8(11):1407-24. doi: 10.1517/17425247.2011.604311, PMID 21831007.
Xie K, Gao X, Xiao C, Molinari N, Angioletti Uberti S. Rationalizing the effect of shape and size in nanoparticle-based glues. J Phys Chem C. 2022 May 5;126(17):7517-28. doi: 10.1021/acs.jpcc.2c00461.
Gavze E, Shapiro M. Particles in a shear flow near a solid wall: effect of nonsphericity on forces and velocities. Int J Multiphase Flow. 1997 Feb 1;23(1):155-82. doi: 10.1016/S0301-9322(96)00054-7.
Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther. 2008 Aug 1;16(8):1450-8. doi: 10.1038/mt.2008.127, PMID 18560419.
Pathak S, Vyas SP, Pandey A. Development characterization and in vitro release kinetic studies of ibandronate loaded chitosan nanoparticles for effective management of osteoporosis. Int J App Pharm. 2021 Nov 7;13(6):120-5. doi: 10.22159/ijap.2021v13i6.42697.
Reddy G, Sood S. Solid lipid nanoparticles for oral delivery of poorly soluble drugs. J Pharm Sci & Res. 2012;4(7):1848-55.
Righeschi C, Bergonzi MC, Isacchi B, Bazzicalupi C, Gratteri P, Bilia AR. Enhanced curcumin permeability by SLN formulation: the PAMPA approach. LWT Food Sci Technol. 2016 Mar 1;66:475-83. doi: 10.1016/j.lwt.2015.11.008.
Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020 Oct 30;7:587997. doi: 10.3389/fmolb.2020.587997, PMID 33195435.
Turksen K, Bhargava U, Moe HK, Aubin JE. Isolation of monoclonal antibodies recognizing rat bone-associated molecules in vitro and in vivo. J Histochem Cytochem. 1992;40(9):1339-52. doi: 10.1177/40.9.1506671, PMID 1506671.
Alcala Orozco CR, Mutreja I, Cui X, Kumar D, Hooper GJ, Lim KS. Design and characterisation of multi-functional strontium gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. Bioprinting. 2020 Jun 1;18:e00073. doi: 10.1016/j.bprint.2019.e00073.
Van der Horst G, Van Bezooijen RL, Deckers MM, Hoogendam J, Visser A, Lowik CW. Differentiation of murine preosteoblastic KS483 cells depends on autocrine bone morphogenetic protein signaling during all phases of osteoblast formation. Bone. 2002 Dec 1;31(6):661-9. doi: 10.1016/s8756-3282(02)00903-1, PMID 12531559.
Published
How to Cite
Issue
Section
Copyright (c) 2024 ANOOP NARAYANAN V., ANISH JOHN, SUMUKH P. R, SNEH PRIYA, CHAITHRA RAVIRAJ, HARSHA ASHTEKAR
This work is licensed under a Creative Commons Attribution 4.0 International License.