EXPLORING POTENTIAL OF NOVEL HETEROCYCLIC COMPOUNDS AND THEIR STRUCTURE-ACTIVITY RELATIONSHIP IN PROSTATE CANCER TREATMENT

Authors

  • KAVANA KRISHNA NAYAK Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0009-0008-1456-2828
  • RUCHI VERMA Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-1279-7243
  • LALIT KUMAR Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur-844102, Bihar, India https://orcid.org/0000-0002-2418-9712

DOI:

https://doi.org/10.22159/ijap.2025v17i1.51915

Keywords:

Anti-cancer agents, Anti-proliferative activity, Druggable targets, Novel, Potent, Synthetic compounds

Abstract

Prostate cancer is one of the leading causes of male death globally, and its overall incidence flaunts a rising trend over the years. Currently available treatment modalities for prostate cancer suffer from severe toxicity, unpredictable efficacy, high costs, and the emergence of resistance towards anti-cancer compounds. This substantiates the need to develop novel and potent anti-proliferative agents against prostate cancer. Multiple cellular mechanisms underlie the development of prostate cancer and, thus, multiple drug gable targets. In recent years, researchers have been conducting a myriad of investigations in this direction. This work recapitulates the synthesis of 78 such molecules based on recent references. These compounds are classified and tabulated according to the moiety that they possess. Further, the review study highlights the potent member of each chemical class. In addition, the review provides fundamental insights into the design and development of such compounds through the structure-activity relationship of each series of compounds, thereby unlocking new doors for future exploration.

Downloads

Download data is not yet available.

References

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778-89. doi: 10.1002/ijc.33588, PMID 33818764.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209-49. doi: 10.3322/caac.21660, PMID 33538338.

Giona S. Chapter 1. The epidemiology of prostate cancer. In: Bott SR, Ng KL, editors. Prostate cancer. Brisbane (AU). Exon Publications; 2021 May 27. doi: 10.36255/exonpublications.prostatecancer.epidemiology.2021, PMID 34181376.

Haffner MC, Zwart W, Roudier MP, True LD, Nelson WG, Epstein JI. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol. 2021;18(2):79-92. doi: 10.1038/s41585-020-00400-w, PMID 33328650, PMCID PMC7969494.

Tolkach Y, Kristiansen G. The heterogeneity of prostate cancer: a practical approach. Pathobiology. 2018;85(1-2):108-16. doi: 10.1159/000477852, PMID 29393241.

Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013 Feb 19;108(3):479-85. doi: 10.1038/bjc.2012.581, PMID 23299535.

NG KL. Chapter 2. The etiology of prostate cancer. In: Bott SR, Ng KL, editors. Prostate cancer. Brisbane (AU). Exon Publications; 2021 May 27. PMID 34181375.

Pienta KJ, Esper PS. Risk factors for prostate cancer. Ann Intern Med. 1993 May 15;118(10):793-803. doi: 10.7326/0003-4819-118-10-199305150-00007, PMID 8470854.

Stangelberger A, Waldert M, Djavan B. Prostate cancer in elderly men. Rev Urol. 2008;10(2):111-9. PMID 18660852, PMCID PMC2483315.

McHugh J, Saunders EJ, Dadaev T, McGrowder E, Bancroft E, Kote Jarai Z. Prostate cancer risk in men of differing genetic ancestry and approaches to disease screening and management in these groups. Br J Cancer. 2022 Jun;126(10):1366-73. doi: 10.1038/s41416-021-01669-3, PMID 34923574, PMCID PMC9090767.

Wilson KM, Mucci LA. Diet and lifestyle in prostate cancer. Adv Exp Med Biol. 2019;1210:1-27. doi: 10.1007/978-3-030-32656-2_1, PMID 31900902.

Pouresmaeili F, Hosseini SJ, Farzaneh F, Karimpour A, Azargashb E, Yaghoobi M. Evaluation of environmental risk factors for prostate cancer in a population of Iranian patients. Asian Pac J Cancer Prev. 2014;15(24):10603-5. doi: 10.7314/apjcp.2014.15.24.10603, PMID 25605146.

Chen FZ, Zhao XK. Prostate cancer: current treatment and prevention strategies. Iran Red Crescent Med J. 2013 Apr;15(4):279-84. doi: 10.5812/ircmj.6499, PMID 24082997, PMCID PMC3785898.

Bracarda S, Logothetis C, Sternberg CN, Oudard S. Current and emerging treatment modalities for metastatic castration-resistant prostate cancer. BJU Int. 2011 Apr;107 Suppl 2:13-20. doi: 10.1111/j.1464-410X.2010.10036.x, PMID 21382150.

Melloni C, Roe MT. Androgen deprivation therapy and cardiovascular disease. Urol Oncol. 2020 Feb;38(2):45-52. doi: 10.1016/j.urolonc.2019.02.010, PMID 30879969.

LI JR, Wang SS, Chen CS, Cheng CL, Hung SC, Lin CH. Conventional androgen deprivation therapy is associated with an increased risk of cardiovascular disease in advanced prostate cancer a nationwide population-based study. Plos One. 2022 Jun 28;17(6):e0270292. doi: 10.1371/journal.pone.0270292, PMID 35763533.

Ritch C, Cookson M. Recent trends in the management of advanced prostate cancer. F1000Res. 2018 Sep 21;7. doi: 10.12688/f1000research.15382.1, PMID 30345007.

Sahu M, Suryawanshi H. Immunotherapy: the future of cancer treatment. J Oral Maxillofac Pathol. 2021 May-Aug;25(2):371. doi: 10.4103/0973-029X.325257, PMID 34703141.

Kelly PN. The cancer immunotherapy revolution. Science. 2018 Mar 23;359(6382):1344-5. doi: 10.1126/science.359.6382.1344, PMID 29567702.

Patnaik A. Revolutionizing cancer treatment: the challenges of immunotherapy. Immunol Disord Immunother. 2023;8(1):137. doi: 10.35248/2593-8509.23.8.137.

Couchoud C, Fagnoni P, Aubin F, Westeel V, Maurina T, Thiery Vuillemin A. Economic evaluations of cancer immunotherapy: a systematic review and quality evaluation. Cancer Immunol Immunother. 2020 Oct;69(10):1947-58. doi: 10.1007/s00262-020-02646-0, PMID 32676716.

Cha HR, Lee JH, Ponnazhagan S. Revisiting immunotherapy: a focus on prostate cancer. Cancer Res. 2020 Apr 15;80(8):1615-23. doi: 10.1158/0008-5472.CAN-19-2948, PMID 32066566.

Gupta S, Shukla S. Limitations of immunotherapy in cancer. Cureus. 2022 Oct 29;14(10):e30856. doi: 10.7759/cureus.30856, PMID 36465776.

Porta Pardo E, Godzik A. Mutation drivers of immunological responses to cancer. Cancer Immunol Res. 2016 Sep 2;4(9):789-98. doi: 10.1158/2326-6066.CIR-15-0233, PMID 27401919.

Gududuru V, Hurh E, Dalton JT, Miller DD. Synthesis and antiproliferative activity of 2-aryl-4-oxo-thiazolidin-3-yl-amides for prostate cancer. Bioorg Med Chem Lett. 2004;14(21):5289-93. doi: 10.1016/j.bmcl.2004.08.029, PMID 15454213.

DE Monte C, Carradori S, Secci D, D Ascenzio M, Guglielmi P, Mollica A. Synthesis and pharmacological screening of a large library of 1,3,4-thiadiazolines as innovative therapeutic tools for the treatment of prostate cancer and melanoma. Eur J Med Chem. 2015 Nov 13;105:245-62. doi: 10.1016/j.ejmech.2015.10.023, PMID 26498571.

Gududuru V, Hurh E, Sullivan J, Dalton JT, Miller DD. SAR studies of 2-arylthiazolidine-4-carboxylic acid amides: a novel class of cytotoxic agents for prostate cancer. Bioorg Med Chem Lett. 2005;15(18):4010-3. doi: 10.1016/j.bmcl.2005.06.032, PMID 16005217.

Bassetto M, Ferla S, Pertusati F, Kandil S, Westwell AD, Brancale A. Design and synthesis of novel bicalutamide and enzalutamide derivatives as antiproliferative agents for the treatment of prostate cancer. Eur J Med Chem. 2016 Aug 8;118:230-43. doi: 10.1016/j.ejmech.2016.04.052, PMID 27131065.

Sallam AA, Ramasahayam S, Meyer SA, El Sayed KA. Design synthesis and biological evaluation of dibromotyrosine analogues inspired by marine natural products as inhibitors of human prostate cancer proliferation invasion and migration. Bioorg Med Chem. 2010;18(21):7446-57. doi: 10.1016/j.bmc.2010.08.057, PMID 20884214.

Bruno RD, Vasaitis TS, Gediya LK, Purushottamachar P, Godbole AM, Ates Alagoz Z. Synthesis and biological evaluations of putative metabolically stable analogs of VN/124-1 (TOK-001): head to head anti-tumor efficacy evaluation of VN/124-1 (TOK-001) and abiraterone in LAPC-4 human prostate cancer xenograft model. Steroids. 2011;76(12):1268-79. doi: 10.1016/j.steroids.2011.06.002, PMID 21729712.

Fortin S, Brasseur K, Morin N, Asselin E, Berube G. New platinum(II) complexes conjugated at position 7α of 17β-acetyl testosterone as new combi-molecules against prostate cancer: design synthesis structure-activity relationships and biological evaluation. Eur J Med Chem. 2013 Oct;68:433-43. doi: 10.1016/j.ejmech.2013.08.011, PMID 23994871.

Bastien D, Hanna R, Leblanc V, Asselin E, Berube G. Synthesis and preliminary in vitro biological evaluation of 7α-testosterone chlorambucil hybrid designed for the treatment of prostate cancer. Eur J Med Chem. 2013;64:442-7. doi: 10.1016/j.ejmech.2013.04.027, PMID 23665800.

Heng MP, Sinniah SK, Teoh WY, Sim KS, Ng SW, Cheah YK. Synthesis of a DNA-targeting nickel (II) complex with testosterone thiosemicarbazone, which exhibits selective cytotoxicity towards human prostate cancer cells (LNCaP). Spectrochim Acta A Mol Biomol Spectrosc. 2015;150(1):360-72. doi: 10.1016/j.saa.2015.05.095, PMID 26057090.

Shi YK, Wang B, Shi XL, DI Zhao YD, YU B, Liu HM. Synthesis and biological evaluation of new steroidal pyridines as potential anti-prostate cancer agents. Eur J Med Chem. 2018 Feb 10;145:11-22. doi: 10.1016/j.ejmech.2017.12.094, PMID 29310026.

Sethi A, Singh P, Yadav N, Yadav P, Banerjee M, Singh RP. Greener approach for synthesis of novel steroidal prodrugs using ionic liquid their DFT study and apoptosis activity in prostate cancer cell line. J Mol Struct. 2019;1180:733-40. doi: 10.1016/j.molstruc.2018.12.009.

Dalidovich TS, Hurski AL, Morozevich GE, Latysheva AS, Sushko TA, Strushkevich NV. New azole derivatives of [17(20)E]-21-norpregnene: synthesis and inhibition of prostate carcinoma cell growth. Steroids. 2019;147(20):10-8. doi: 10.1016/j.steroids.2018.08.004, PMID 30149075.

Jorda R, Reznickova E, Kielczewska U, Maj J, Morzycki JW, Siergiejczyk L. Synthesis of novel galeterone derivatives and evaluation of their in vitro activity against prostate cancer cell lines. Eur J Med Chem. 2019;179:483-92. doi: 10.1016/j.ejmech.2019.06.040, PMID 31271960.

Komendantova AS, Scherbakov AM, Komkov AV, Chertkova VV, Gudovanniy AO, Chernoburova EI. Novel steroidal 1,3,4-thiadiazines: synthesis and biological evaluation in androgen receptor-positive prostate cancer 22Rv1 cells. Bioorg Chem. 2019 Oct;91:103142. doi: 10.1016/j.bioorg.2019.103142, PMID 31400555.

Hou Q, HE C, Lao K, Luo G, You Q, Xiang H. Design and synthesis of novel steroidal imidazoles as dual inhibitors of AR/CYP17 for the treatment of prostate cancer. Steroids. 2019;150:108384. doi: 10.1016/j.steroids.2019.03.003, PMID 30885648.

Scherbakov AM, Komkov AV, Komendantova AS, Yastrebova MA, Andreeva OE, Shirinian VZ. Steroidal pyrimidines and dihydrotriazines as novel classes of anticancer agents against hormone-dependent breast cancer cells. Front Pharmacol. 2017;8:979. doi: 10.3389/fphar.2017.00979, PMID 29375380.

Chen PS, Shih YW, Huang HC, Cheng HW. Diosgenin a steroidal saponin inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression. Plos One. 2011;6(5):e20164. doi: 10.1371/journal.pone.0020164, PMID 21629786.

Nagaraju M, Gnana Deepthi E, Ashwini C, Vishnuvardhan MV, Lakshma Nayak V, Chandra R. Synthesis and selective cytotoxic activity of novel hybrid chalcones against prostate cancer cells. Bioorg Med Chem Lett. 2012;22(13):4314-7. doi: 10.1016/j.bmcl.2012.05.016, PMID 22668451.

Zhou J, Geng G, Batist G, WU JH. Syntheses and potential anti-prostate cancer activities of ionone-based chalcones. Bioorg Med Chem Lett. 2009;19(4):1183-6. doi: 10.1016/j.bmcl.2008.12.089, PMID 19138519.

Britton RG, Horner Glister E, Pomenya OA, Smith EE, Denton R, Jenkins PR. Synthesis and biological evaluation of novel flavonols as potential anti-prostate cancer agents. Eur J Med Chem. 2012 Aug;54:952-8. doi: 10.1016/j.ejmech.2012.06.031, PMID 22789812.

LI X, Lee M, Chen G, Zhang Q, Zheng S, Wang G. 3-O-Substituted-3′,4′,5′-trimethoxyflavonols: synthesis and cell based evaluation as anti-prostate cancer agents. Bioorg Med Chem. 2017;25(17):4768-77. doi: 10.1016/j.bmc.2017.07.022, PMID 28760528.

Monim Ul Mehboob M, Altaf M, Fettouhi M, Isab AA, Wazeer MI, Shaikh MN. Synthesis spectroscopic characterization and anti-cancer properties of new gold(III) alkanediamine complexes against gastric prostate and ovarian cancer cells; crystal structure of [Au2(pn)2(Cl)2]Cl2•H2O. Polyhedron. 2013;61:225-34. doi: 10.1016/j.poly.2013.05.054.

Liu GZ, XU HW, Wang P, Lin ZT, Duan YC, Zheng JX. Stereoselective synthesis and anti-proliferative effects on prostate cancer evaluation of 5-substituted-3,4-diphenylfuran-2-ones. Eur J Med Chem. 2013 Jul;65:323-36. doi: 10.1016/j.ejmech.2013.04.062, PMID 23735281.

Nakao S, Mabuchi M, Shimizu T, Itoh Y, Takeuchi Y, Ueda M. Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs. Bioorg Med Chem Lett. 2014;24(4):1071-4. doi: 10.1016/j.bmcl.2014.01.008, PMID 24461353.

Akinboye ES, Bamji ZD, Kwabi Addo B, Ejeh D, Copeland RL, Denmeade SR. Design synthesis and cytotoxicity studies of dithiocarbamate ester derivatives of emetine in prostate cancer cell lines. Bioorg Med Chem. 2015;23(17):5839-45. doi: 10.1016/j.bmc.2015.06.072, PMID 26187015.

Chen H, XU F, Liang X, XU BB, Yang ZL, HE XL. Design synthesis and biological evaluation of novel arylpiperazine derivatives on human prostate cancer cell lines. Bioorg Med Chem Lett. 2015;25(2):285-7. doi: 10.1016/j.bmcl.2014.11.049, PMID 25488843.

Vue B, Zhang S, Zhang X, Parisis K, Zhang Q, Zheng S. Silibinin derivatives as anti-prostate cancer agents: synthesis and cell-based evaluations. Eur J Med Chem. 2016;109:36-46. doi: 10.1016/j.ejmech.2015.12.041, PMID 26748997.

Vue B, Zhang X, Lee T, Nair N, Zhang S, Chen G. 5-or/and 20-O-alkyl-2,3-dehydrosilybins: synthesis and biological profiles on prostate cancer cell models. Bioorg Med Chem. 2017;25(17):4845-54. doi: 10.1016/j.bmc.2017.07.035, PMID 28756013.

Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008 Oct 8;269(2):352-62. doi: 10.1016/j.canlet.2008.03.053, PMID 18472213.

Lobo G, Monasterios M, Rodrigues J, Gamboa N, Capparelli MV, Martinez Cuevas J. Synthesis crystal structure and effect of indeno[1,2-b]indole derivatives on prostate cancer in vitro. Potential effect against MMP-9. Eur J Med Chem. 2015;96:281-95. doi: 10.1016/j.ejmech.2015.04.023, PMID 25899333.

HE ZX, Huo JL, Gong YP, An Q, Zhang X, Qiao H. Design synthesis and biological evaluation of novel thiosemicarbazone indole derivatives targeting prostate cancer cells. Eur J Med Chem. 2021 Jan 15;210:112970. doi: 10.1016/j.ejmech.2020.112970, PMID 33153765.

Mandalapu D, Saini KS, Gupta S, Sharma V, Yaseen Malik M, Chaturvedi S. Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines. Bioorg Med Chem Lett. 2016;26(17):4223-32. doi: 10.1016/j.bmcl.2016.07.053, PMID 27496212.

Madasu C, Karri S, Sangaraju R, Sistla R, Uppuluri MV. Synthesis and biological evaluation of some novel 1,2,3-triazole hybrids of myrrhanone B isolated from commiphora mukul gum resin: identification of potent antiproliferative leads active against prostate cancer cells (PC-3). Eur J Med Chem. 2020;188:111974. doi: 10.1016/j.ejmech.2019.111974, PMID 31883489.

XU X, Zhang J, Zhang Z, Wang M, Liu Y, LI X. Systems pharmacology in combination with proteomics reveals underlying mechanisms of xihuang pill against triple-negative breast cancer. Bioengineered. 2020;11(1):1170-88. doi: 10.1080/21655979.2020.1834726, PMID 33092442.

LI K, LI Y, Zhou D, Fan Y, Guo H, MA T. Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors. Bioorg Med Chem. 2016;24(8):1889-97. doi: 10.1016/j.bmc.2016.03.016, PMID 26979485.

Zhang X, Wang R, Perez GR, Chen G, Zhang Q, Zheng S. Design synthesis and biological evaluation of 1,9-diheteroarylnona-1,3,6,8-tetraen-5-ones as a new class of anti-prostate cancer agents. Bioorg Med Chem. 2016;24(19):4692-700. doi: 10.1016/j.bmc.2016.08.006, PMID 27543391.

Mbese Z, Khwaza V, Aderibigbe BA. Curcumin and its derivatives as potential therapeutic agents in prostate colon and breast cancers. Molecules. 2019 Nov 30;24(23):4386. doi: 10.3390/molecules24234386, PMID 31801262.

LI K, LI L, Wang S, LI X, MA T, Liu D. Design and synthesis of novel 2-substituted 11-keto-boswellic acid heterocyclic derivatives as anti-prostate cancer agents with Pin1 inhibition ability. Eur J Med Chem. 2017;126:910-9. doi: 10.1016/j.ejmech.2016.09.089, PMID 27997878.

Huang M, LI A, Zhao F, Xie X, LI K, Jing Y. Design synthesis and biological evaluation of ring modified 11-keto-boswellic acid derivatives as pin1 inhibitors with remarkable anti-prostate cancer activity. Bioorg Med Chem Lett. 2018;28(19):3187-93. doi: 10.1016/j.bmcl.2018.08.021, PMID 30153964.

Saravanan K, Elancheran R, Divakar S, Anand SA, Ramanathan M, Kotoky J. Design synthesis and biological evaluation of 2-(4-phenylthiazol-2-yl) isoindoline-1,3-dione derivatives as anti-prostate cancer agents. Bioorg Med Chem Lett. 2017;27(5):1199-204. doi: 10.1016/j.bmcl.2017.01.065, PMID 28162857.

Kumar MR, Manikandan A, Sivakumar A, Dhayabaran VV. An eco-friendly catalytic system for multicomponent one-pot synthesis of novel spiro chromeno indoline triones and their anti-prostate cancer potentials evaluated via alkaline phosphatase inhibition mechanism. Bioorg Chem. 2018 Dec;81:44-54. doi: 10.1016/j.bioorg.2018.07.037, PMID 30118985.

Rai R, Dutta RK, Singh S, Yadav DK, Kumari S, Singh H. Synthesis biological evaluation and molecular docking study of 1-amino-2-aroylnaphthalenes against prostate cancer. Bioorg Med Chem Lett. 2018;28(9):1574-80. doi: 10.1016/j.bmcl.2018.03.057, PMID 29606573.

Brito V, Santos AO, Alves G, Almeida P, Silvestre S. Novel 4-azapregnene derivatives as potential anticancer agents: synthesis antiproliferative activity and molecular docking studies. Molecules. 2022;27(18). doi: 10.3390/molecules27186126, PMID 36144856.

Seo Y, Lee JH, Park SH, Namkung W, Kim I. Expansion of chemical space based on a pyrrolo[1,2-a]pyrazine core: synthesis and its anticancer activity in prostate cancer and breast cancer cells. Eur J Med Chem. 2020 Feb 15;188:111988. doi: 10.1016/j.ejmech.2019.111988, PMID 31901746.

Rajaram P, Jiang Z, Chen G, Rivera A, Phasakda A, Zhang Q. Nitrogen containing derivatives of O-tetramethylquercetin: synthesis and biological profiles in prostate cancer cell models. Bioorg Chem. 2019 Jun;87:227-39. doi: 10.1016/j.bioorg.2019.03.047, PMID 30904813.

DE Grandis RA, Santos PW, Oliveira KM, Machado AR, Aissa AF, Batista AA. Novel lawsone containing ruthenium(II) complexes: synthesis characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells. Bioorg Chem. 2019 Apr;85:455-68. doi: 10.1016/j.bioorg.2019.02.010, PMID 30776556.

Sanz Del Olmo N, Maroto Diaz M, Quintana S, Gomez R, Holota M, Ionov M. Heterofunctional ruthenium(II) carbosilane dendrons a new class of dendritic molecules to fight against prostate cancer. Eur J Med Chem. 2020 Dec 1;207:112695. doi: 10.1016/j.ejmech.2020.112695, PMID 32882608.

Sanz Del Olmo N, Bajo AM, Ionov M, Garcia Gallego S, Bryszewska M, Gomez R. Cyclopentadienyl ruthenium(II) carbosilane metallodendrimers as a promising treatment against advanced prostate cancer. Eur J Med Chem. 2020;199:112414. doi: 10.1016/j.ejmech.2020.112414, PMID 32438200.

Sanchez Milla M, Munoz Moreno L, Sanchez Nieves J, Maly M, Gomez R, Carmena MJ. Anticancer activity of dendriplexes against advanced prostate cancer from protumoral peptides and cationic carbosilane dendrimers. Biomacromolecules. 2019;20(3):1224-34. doi: 10.1021/acs.biomac.8b01632, PMID 30669830.

Gungor T, Tokay E, Guven Gulhan U, Hacıoglu N, Celik A, Koçkar F. Prodrugs for nitroreductase based cancer therapy-4: towards prostate cancer targeting: synthesis of N-heterocyclic nitro prodrugs Ssap NtrB enzymatic activation and anticancer evaluation. Bioorg Chem. 2020 Dec;105:104450. doi: 10.1016/j.bioorg.2020.104450, PMID 33189994.

Basiri A, Zhang W, Garrison J. Synthesis and evaluation of new dinitrobenzamide mustards in human prostate cancer. Bioorg Med Chem Lett. 2021;31:127697. doi: 10.1016/j.bmcl.2020.127697, PMID 33220402.

Wang A, Wang Y, Meng X, Yang Y. Design synthesis and biological evaluation of novel thiohydantoin derivatives as potent androgen receptor antagonists for the treatment of prostate cancer. Bioorg Med Chem. 2021;31:115953. doi: 10.1016/j.bmc.2020.115953, PMID 33388655.

Mehdi S, Chauhan A, Dhutty A. Cancer and new prospective to treat cancer. Int J Curr Pharm Sci. 2023;15(6):16-22. doi: 10.22159/ijcpr.2023v15i6.3078.

Mathew C, Lal N, Lakshmi S, Aswathy TR, Varkey J. Antioxidant anticancer and molecular docking studies of novel 5-benzylidene substituted rhodanine derivatives. Int J Pharm Pharm Sci. 2023;15(7):7-19. doi: 10.22159/ijpps.2023v15i7.47421.

Jahan SM, Kabir S, Jinatrahana, Sazianowshin SS, Salam S, Islam J. Study of the physiological role of Streblus asper as a chemopreventive agent on human prostate cancer (DU-145) cell line. Asian J Pharm Clin Res. 2024;17(7):126-30. doi: 10.22159/ajpcr.2024v17i7.50977.

Bamaniya BB, Mavuduru RS, Bora GS, Sharma AP, SK, Rastogi A. Serum testosterone as a marker of response to androgen deprivation therapy in metastatic prostate cancer. Asian J Pharm Clin Res. 2023;16(8):176-80. doi: 10.22159/ajpcr.2023.v16i8.48075.

Published

07-01-2025

How to Cite

NAYAK, K. K., VERMA, R., & KUMAR, L. (2025). EXPLORING POTENTIAL OF NOVEL HETEROCYCLIC COMPOUNDS AND THEIR STRUCTURE-ACTIVITY RELATIONSHIP IN PROSTATE CANCER TREATMENT. International Journal of Applied Pharmaceutics, 17(1), 23–38. https://doi.org/10.22159/ijap.2025v17i1.51915

Issue

Section

Review Article(s)