PRELIMINARY STUDY ON ALGINATE CONCENTRATION AND ANTIBACTERIAL ACTIVITY OF PALMAROSA ESSENTIAL OIL
DOI:
https://doi.org/10.22159/ijap.2024v16i6.51994Keywords:
Alginate, Cymbopogon martini, Ionic gelation, Microencapsulation, PalmarosaAbstract
Objective: Palmarosa (Cymbopogon martinii (Roxb.)) essential oil has volatile active compounds, therefore, it requires modification of encapsulation to obtain optimum potency. This study investigated the relationship between various alginate concentrations in microencapsulation against the quality of the formula and antibacterial activity.
Methods: The study use Palmarosa Essential Oil (PEO) that distillated at Rumah Atsiri, Indonesia. Ionic gelation was used to prepare microencapsulations at different alginate concentrations of 0.5%, 0.75%, and 1.5%. The investigation involved Fourier Transform Infrared (FTIR), organoleptic, morphological, microencapsulated weight, Encapsulation Efficiency (EE), and antibacterial activity.
Results: The organoleptic observation results for all formulas are white in color, have a pronounced PEO scent, and contain spherical particles with macrometer-sized morphology similar to soft beads. The result FTIR showed that F1, F2, and F3 contain aromatic ring, primarily alcohol, alkene, alkyl, and alcohol. The results showed that F1, F2, and F3 were included in the microencapsulation range, namely 5-5,000 µm. Formula III had the greatest EE of 86.53±0.75% and antibacterial activity against Staphylococcus epidermidis and Pseudomonas aeruginosa, respectively showed inhibition zones with diameters of 12.30±0.16 mm and 7.60±0.24 mm.
Conclusion: This study revealed that the findings of this study demonstrate that the concentration of alginate in microencapsulation influences the properties and antibacterial activity of PEO. Higher alginate concentrations can lead to increased EE, particle size distribution, and ultimately leading to enhanced antibacterial activity.
Downloads
References
Utami N, Yety Lindawati N, Karunia Kristy T. Quality evaluation and effectiveness of palmarosa (Cymbopogon martinii var. motia) essential oils as repellents against Aedes aegypti. Res J Pharm Technol. 2023 Dec 29;16(12):5990-5. doi: 10.52711/0974-360X.2023.00972.
Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey NK. Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control. 2018 Jul;89:1-11. doi: 10.1016/j.foodcont.2018.01.018.
Klosowska A, Wawrzynczak A, Feliczak Guzik A. Microencapsulation as a route for obtaining encapsulated flavors and fragrances. Cosmetics. 2023 Jan 29;10(1):26. doi: 10.3390/cosmetics10010026.
Sousa VI, Parente JF, Marques JF, Forte MA, Tavares CJ. Microencapsulation of essential oils: a review. Polymers. 2022 Apr 23;14(9):1730. doi: 10.3390/polym14091730, PMID 35566899.
Julaeha E, Nurzaman M, Wahyudi T, Nurjanah S, Permadi N, Anshori JA. The development of the antibacterial microcapsules of citrus essential oil for the cosmetotextile application: a review. Molecules. 2022 Nov 21;27(22):8090. doi: 10.3390/molecules27228090, PMID 36432192.
Enascuta CE, Stepan E, Oprescu EE, Radu A, Alexandrescu E, Stoica R. Microencapsulation of essential oils. Rev Chim. 2018 Aug 15;69(7):1612-5. doi: 10.37358/RC.18.7.6381.
Carvalho IT, Estevinho BN, Santos L. Application of microencapsulated essential oils in cosmetic and personal healthcare products a review. Int J Cosmet Sci. 2016;38(2):109-19. doi: 10.1111/ics.12232, PMID 25923295.
Froiio F, Ginot L, Paolino D, Lebaz N, Bentaher A, Fessi H. Essential oils loaded polymer particles: preparation characterization and antimicrobial property. Polymers. 2019 Jun 9;11(6):1017. doi: 10.3390/polym11061017, PMID 31181851.
Gayo CD. Pengaruh variasi konsentrasi natrium alginat terhadap efisiensi penjerapan mikrokapsul minyak biji jinten hitam (Nigella sativa L.); 2016.
Soliman EA, El Moghazy AY, El Din MS, Massoud MA. Microencapsulation of essential oils within alginate: formulation and in vitro evaluation of antifungal activity. J Encapsulation Adsorpt Sci. 2013 Jan 1;03(1):48-55. doi: 10.4236/jeas.2013.31006.
Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163-75. doi: 10.1038/nprot.2007.521, PMID 18274517.
Zorah M, Mudhafar M, Naser HA, Mustapa IR. The promises of the potential uses of polymer biomaterials in biomedical applications and their challenges. Int J App Pharm. 2023 Jul 7;15(4):27-36. doi: 10.22159/ijap.2023v15i4.48119.
Amatrejo S, HR T. Tinospora extract encapsulation with sodium alginate isolated from brown algae. Asian J Pharm Clin Res. 2017 Nov 1;10(11):267. doi: 10.22159/ajpcr.2017.v10i11.16517.
Samran S, Dalimunthe D, Dalimunthe D, Dalimunthe D. The formulation of dry curcuma extract microcapsules by spray wet microencapsulation techniques. Asian J Pharm Clin Res. 2018 Mar 1;11(3):226. doi: 10.22159/ajpcr.2018.v11i3.22608.
HU C, LU W, Mata A, Nishinari K, Fang Y. Ions induced gelation of alginate: mechanisms and applications. Int J Biol Macromol. 2021 Apr 30;177:578-88. doi: 10.1016/j.ijbiomac.2021.02.086, PMID 33617905.
Mergulhao NL, Bulhoes LC, Silva VC, Duarte IF, Basilio Junior ID, Freitas JD. Insights from Syzygium aromaticum essential oil: encapsulation characterization and antioxidant activity. Pharmaceuticals (Basel). 2024 May 8;17(5):599. doi: 10.3390/ph17050599, PMID 38794169.
Cimino C, Maurel OM, Musumeci T, Bonaccorso A, Drago F, Souto EM. Essential oils: pharmaceutical applications and encapsulation strategies into lipid based delivery systems. Pharmaceutics. 2021 Mar 3;13(3):327. doi: 10.3390/pharmaceutics13030327, PMID 33802570.
Suljagic J, Bratovcic A. Micro and nano-encapsulation in food industry. Croat J Food Sci Technol. 2019 May;11(1):113-21. doi: 10.17508/CJFST.2019.11.1.17.
Tan J, Luo Y, Guo Y, Zhou Y, Liao X, LI D. Development of alginate based hydrogels: crosslinking strategies and biomedical applications. Int J Biol Macromol. 2023 Jun;239:124275. doi: 10.1016/j.ijbiomac.2023.124275, PMID 37011751.
Abka Khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, Michaud P. Structures properties and applications of alginates. Mar Drugs. 2022 May 29;20(6):364. doi: 10.3390/md20060364, PMID 35736167.
MA D, Yang B, Zhao J, Yuan D, LI Q. Advances in protein based microcapsules and their applications: a review. Int J Biol Macromol. 2024 Jan;263(1):129742. doi: 10.1016/j.ijbiomac.2024.129742, PMID 38278389.
Jyothi NV, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques factors influencing encapsulation efficiency. J Microencapsul. 2010 May;27(3):187-97. doi: 10.3109/02652040903131301, PMID 20406093.
Sairam M, Babu VR, Vijaya B, Naidu K, Aminabhavi TM. Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles. Int J Pharm. 2006;320(1-2):131-6. doi: 10.1016/j.ijpharm.2006.05.001, PMID 16766148.
Dolca C, Ferrandiz M, Capablanca L, Franco E, Mira E, Lopez F. Microencapsulation of rosemary essential oil by co-extrusion/gelling using alginate as a wall material. J Encapsulation Adsorpt Sci. 2015;05(3):121-30. doi: 10.4236/jeas.2015.53010.
Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils present status and future perspectives. Medicines (Basel). 2017 Aug 8;4(3):58. doi: 10.3390/medicines4030058, PMID 28930272.
Rajagopal M, Walker S. Envelope structures of gram positive bacteria. Curr Top Microbiol Immunol. 2017;404:1-44. doi: 10.1007/82_2015_5021, PMID 26919863, PMCID PMC5002265.
Malanovic N, Lohner K. Gram positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta. 2016;1858(5):936-46. doi: 10.1016/j.bbamem.2015.11.004, PMID 26577273.
Miller SI, Salama NR. The gram negative bacterial periplasm: size matters. PLOS Biol. 2018 Jan 17;16(1):e2004935. doi: 10.1371/journal.pbio.2004935, PMID 29342145, PMCID PMC5771553.
Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK. Outer membrane protein biogenesis in gram negative bacteria. Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679):20150023. doi: 10.1098/rstb.2015.0023, PMID 26370935, PMCID PMC4632599.
Sun J, Rutherford ST, Silhavy TJ, Huang KC. Physical properties of the bacterial outer membrane. Nat Rev Microbiol. 2022 Apr;20(4):236-48. doi: 10.1038/s41579-021-00638-0, PMID 34732874, PMCID PMC8934262.
Rajagopal M, Walker S. Envelope structures of gram positive bacteria. Curr Top Microbiol Immunol. 2017;404:1-44. doi: 10.1007/82_2015_5021, PMID 26919863, PMCID PMC5002265.
Rajagopal M, Walker S. Envelope structures of gram positive bacteria. Curr Top Microbiol Immunol. 2017;404:1-44. doi: 10.1007/82_2015_5021, PMID 26919863, PMCID PMC5002265.
Gumbart JC, Beeby M, Jensen GJ, Roux B. Escherichia coli peptidoglycan structure and mechanics as predicted by atomic scale simulations. PLOS Comput Biol. 2014;10(2):e1003475. doi: 10.1371/journal.pcbi.1003475, PMID 24586129.
Barak I, Muchova K. The role of lipid domains in bacterial cell processes. Int J Mol Sci. 2013 Feb 18;14(2):4050-65. doi: 10.3390/ijms14024050, PMID 23429192, PMCID PMC3588084.
Pasquina Lemonche L, Burns J, Turner RD, Kumar S, Tank R, Mullin N. The architecture of the gram positive bacterial cell wall. Nature. 2020;582(7811):294-7. doi: 10.1038/s41586-020-2236-6, PMID 32523118.
Breijyeh Z, Jubeh B, Karaman R. Resistance of gram negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020 Mar 16;25(6):1340. doi: 10.3390/molecules25061340, PMID 32187986, PMCID PMC7144564.
Published
How to Cite
Issue
Section
Copyright (c) 2024 NASTITI UTAMI, DIAN PUSPITASARI, RETNANINGTYAS KUSUMA DEWI, NOVENA YETY LINDAWATI
This work is licensed under a Creative Commons Attribution 4.0 International License.