MODIFICATION AND CHARACTERIZATION OF AMPROTAB WITH HYDROXYPROPYL METHYLCELLULOSE USING CITRIC ACID AS CROSSLINKING AGENT

Authors

  • SUPRAPTO SUPRAPTO Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia. Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia https://orcid.org/0000-0001-6733-0221
  • TEUKU NANDA SAIFULLAH SULAIMAN Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
  • ABDUL ROHMAN Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
  • AKHMAD KHARIS NUGROHO Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16s5.52487

Keywords:

Crosslinking, Citric acid, Amprotab, HPMC

Abstract

Objective: This study aimed to characterize Amprotab that has been modified chemically, physically, and mechanically using HPMC and citric acid.

Methods: The study is divided into two parts: three control formulas and three treatment formulas. Control Formula 1 (without HPMC and citric acid), Control 2 (HPMC 1.5 g without citric acids), Control 3 (citric acid 1.5 g without HPMC), Formula 1 (HPMC 4.5 g and citric acid 4.5 g). By analyzing Fourier Transform Infrared (FTIR), scanning electron microscopy (SEM), swelling, tensile strength, stability (freeze-thaw cycles), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA), copolymers modified by Amprotab were characterized.

Results: An FTIR analysis revealed that crosslinking of Amprotab was formed in formulas 1, 2, and 3 with prominent C=O ester bonds at peaks of 1730.22 cm-1, 1733.12 cm-1, and 1736.01 cm-1. The surface morphology of the modified cassava amylum CROSSLINKED COPOLYMER (CCA) was coarser. CCA's expanding power is less than that of natural Amprotab, whereas CCA's tensile strength is greater.

Conclusion: CCA has a high value for syneresis. XRD analysis revealed that CCA has a crystal diffraction pattern of type B, and TGA analysis revealed that CCA is stable at high temperatures.

Downloads

Download data is not yet available.

References

Mohidin SR, Moshawih S, Hermansyah A, Asmuni MI, Shafqat N, Ming LC. Cassava (Manihot esculenta Crantz): a systematic review for the pharmacological activities traditional uses nutritional values and phytochemistry. J Evid Based Integr Med. 2023;28:2515690X231206227. doi: 10.1177/2515690X231206227, PMID 37822215.

Suprapto ENW, Munawaroh R, Rima Munawaroh. Education about the utilization of cassava starch (tapioca) for health and making snack. Bemas. 2021;2(2):81-7. doi: 10.37373/bemas.v2i2.167.

Adjei FK, Osei YA, Kuntworbe N, Ofori Kwakye K. Evaluation of the disintegrant properties of native starches of five new cassava varieties in paracetamol tablet formulations. J Pharm (Cairo). 2017;2017:2326912. doi: 10.1155/2017/2326912, PMID 28781909.

Akhgari A, Sadeghi H, Dabbagh MA. Modification of flow and compressibility of corn starch using quasi-emulsion solvent diffusion method. Iran J Basic Med Sci. 2014;17(8):553-9. PMID 25422746.

Subramani M, Vekatashwaramurthy DN, Sambathkumar DR. A novel approach on role of polymers used in sustained release drug delivery system-a review. SJMPS. 2021;7(4):170-8. doi: 10.36348/sjmps.2021.v07i04.002.

Mustarichie R, Priambodo D. Tablet formulation from meniran (Phyllanthus niruri l.) extract with direct compression method. Int J App Pharm. 2018;10(4):98-102. doi: 10.22159/ijap.2018v10i4.26795.

Carrascal JJ, Matiz G, Baena Y. Arracacia xanthorrhiza acetylated starch: a new excipient for controlled drug delivery. Int J App Pharm. 2018;10(3):115-22. doi: 10.22159/ijap.2018v10i3.25031.

Allen L, Ansel H. Ansels pharmaceutical dosage forms and drug delivery systems. Tenth edit. New York; 2014.

Kusuma IY, Prabandari R. Optimasi formula tablet piroksikam menggunakan eksipien laktosa avicel pH-101 dan amprotab dengan metode simplex lattice design. Pharmacon. 2020 Jun;17(1):31-44. doi: 10.23917/pharmacon.v17i1.9176.

Nagar CK, Dash SK, Rayaguru K, Pal US, Nedunchezhiyan M. Isolation characterization modification and uses of taro starch: a review. Int J Biol Macromol. 2021;192:574-89. doi: 10.1016/j.ijbiomac.2021.10.041, PMID 34653440.

Magallanes Cruz PA, Duque Buitrago LF, Del Rocio Martinez Ruiz N. Native and modified starches from underutilized seeds: characteristics functional properties and potential applications. Food Res Int. 2023;169:112875. doi: 10.1016/j.foodres.2023.112875, PMID 37254325.

Zeeshan R, Mutahir Z, Iqbal H, Ali M, Iqbal F, Ijaz K. Hydroxy propyl methyl cellulose (HPMC) cross-linked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydr Polym. 2018;193:9-18. doi: 10.1016/j.carbpol.2018.03.046, PMID 29773402.

Saputra AH, Hapsari M, Pitaloka AB, Wulan PP. Synthesis and characterization of hydrogel from cellulose derivatives of water hyacinth (Eichhornia crassipes) through chemical cross linking method by using citric acid. J Eng Sci Technol. 2015;10:75-86.

Pratama SR, Suprapto. Modification and characterization of corn starch (Zea mays L.) and xanthan gum with citric acid crosslinking agent. Usadha J Pharm. 2022;1:150-62.

Venkatesh DN, Meyyanathan SN, Kovacevic A, Zielinska A, Fonseca J, Eder P. Effect of hydrophilic polymers on the release rate and pharmacokinetics of acyclovir tablets obtained by wet granulation: in vitro and in vivo assays. Molecules. 2022 Oct 1;27(19):6490. doi: 10.3390/molecules27196490, PMID 36235026.

Gupta B, Mishra V, Gharat S, Momin M, Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals (Basel). 2021;14(11):1201. doi: 10.3390/ph14111201, PMID 34832983.

Ford JL. Design and evaluation of hydroxypropyl methylcellulose matrix tablets for oral controlled release: a historical perspective. Hydrophilic Matrix Tablets Oral Control Release. 2014;16:17-51. doi: 10.1007/978-1-4939-1519-4_2.

Utomo P, Nizardo NM, Saepudin E. Crosslink modification of tapioca starch with citric acid as a functional food. AIP Conf Proc. 2020;2242(1). doi: 10.1063/5.0010364.

WU H, Lei Y, LU J, Zhu R, Xiao D, Jiao C. Effect of citric acid-induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocoll. 2019;97:105208. doi: 10.1016/j.foodhyd.2019.105208.

Simoes B, Cagnin C, Yamashita F, Olivato J, Garcia P, Mali S. Citric acid as crosslinking agent in starch/xanthan gum hydrogels produced by extrusion and thermopressing. LWT Food Sci Technol. 2019;125:108950. doi: 10.1016/j.lwt.

Kawijia K, Atmaka W, Lestariana S. Study of characteristics whole cassava starch based edible film with citric acid cross linking modification. JTP. 2017;18(2):143-52. doi: 10.21776/ub.jtp.2017.018.02.14.

Sabzi M, Afshari MJ, Babaahmadi M, Shafagh N. PH-dependent swelling and antibiotic release from citric acid crosslinked poly(vinyl alcohol) (PVA)/nano silver hydrogels. Colloids Surf B Biointerfaces. 2020;188:110757. doi: 10.1016/j.colsurfb.2019.110757, PMID 31887648.

Xiao Z, Qin W, Shi L. A electrochemical sensor based on poly(sulfosalicylic acid) film-modified electrode and application to phenol detection in oil field wastewater. Int J Smart Home. 2016;10(6):299-308. doi: 10.14257/ijsh.2016.10.6.29.

Wahab NA, Masri MN, Mohamad M, Watini S, Othman R. Evaluation of plasticizers effects to cassava film using fourier transform infrared spectroscopy. AIP Conf Proc. 2022;2454:60062. doi: 10.1063/5.0079209.

Hazarika BJ, Sit N. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch. Carbohydr Polym. 2016;140:269-78. doi: 10.1016/j.carbpol.2015.12.055, PMID 26876854.

Rusli A, Metusalach M, Tahir MM. Characterization of carrageenan edible films plasticized with glycerol. Jurnal PHPI. 2017;20(2). doi: 10.17844/jphpi.v20i2.17499.

Popa A, Ilia G, Iliescu S, Doca N, Vlase T, Vlase G. Thermogravimetric characterization of styrene divinylbenzene copolymers containing alpha isopropyl amino phosphonic acid groups. Int J Polym Anal Charact. 2017;22(1):43-50. doi: 10.1080/1023666X.2016.1230262.

Marani PL, Bloisi GD, Petri DF. Hydroxy propyl methyl cellulose films cross linked with citric acid for control release of nicotine. Cellulose. 2015;22(6):3907-18. doi: 10.1007/s10570-015-0757-1.

Zhang S, LI Q, Zhao Y, Qin Z, Zheng M, Liu H. Preparation and characterization of low oil absorption corn starch by ultrasonic combined with freeze-thaw treatment. Food Chem X. 2022;15:100410. doi: 10.1016/j.fochx.2022.100410, PMID 36211764.

Harimurti S, Mulyanti AN, Kusnindyasita A, Widada H, Febriansah R, Suwanda T. Sago starch and sodium alginate as natural crosslinking for capsule alternatives. JFSP. 2023;9(3):212-22. doi: 10.31603/pharmacy.v9i3.8856.

Gonenc I, US F. Effect of glutaraldehyde crosslinking on degree of substitution thermal structural and physicochemical properties of corn starch. Starch Starke. 2019;71(3-4):1800046. doi: 10.1002/star.201800046.

Sari SP, Bestari AN, Sulaiman TN. Optimization of famotidine floating tablet formula with combination of xanthan gum and hydroxyl propyl methylcellulose K100M matrixs. Maj Farm. 2019;15(2):86. doi: 10.22146/farmaseutik.v15i2.46878.

Ayu Larasati D, Yuliasih I, Candra Sunarti T. Desain proses pembuatan coating film berbasis pati sagu (Metroxylon Sp.) ikat silangasam sitrat. Jurnal Teknologi Industri Pertanian. 2017;27(3):318-27. doi: 10.24961/j.tek.ind.pert.2017.27.3.318.

Qin Y, Wang W, Zhang H, Dai Y, Hou H, Dong H. Effects of citric acid on structures and properties of thermoplastic hydroxypropyl amylomaize starch films. Materials (Basel). 2019;12(9):1565. doi: 10.3390/ma12091565, PMID 31086040.

Lambros M, Tran TH, Fei Q, Nicolaou M. Citric acid: a multifunctional pharmaceutical excipient. Pharmaceutics. 2022;14(5):972. doi: 10.3390/pharmaceutics14050972, PMID 35631557.

Bodini RB, Guimaraes JG, Monaco Lourenco CA, Aparecida DE, Carvalho R. Effect of starch and hydroxypropyl methylcellulose polymers on the properties of orally disintegrating films. J Drug Deliv Sci Technol. 2019;51:403-10. doi: 10.1016/j.jddst.2019.03.028.

Bertoft E. Understanding starch structure: recent progress. Agronomy. 2017;7(3):56. doi: 10.3390/agronomy7030056.

Canisag H. Bio-crosslinking of starch films with oxidized sucrose; 2015.

LI Y, Zhao L, Lin L, LI E, Cao Q, Wei C. Relationships between X-ray diffraction peaks molecular components and heat properties of C-type starches from different sweet potato varieties. Molecules. 2022;27(11):3385. doi: 10.3390/molecules27113385, PMID 35684323.

Sun S, Liu P, Ji N, Hou H, Dong H. Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing. Food Hydrocoll. 2018;77:964-75. doi: 10.1016/j.foodhyd.2017.11.046.

Gerezgiher AG, Szabo T. Cross linking of starch using citric acid. J Phys: Conf Ser. 2022;2315(1):012036. doi: 10.1088/1742-6596/2315/1/012036.

Published

15-10-2024

How to Cite

SUPRAPTO, S., SULAIMAN, T. N. S., ROHMAN, A., & NUGROHO, A. K. (2024). MODIFICATION AND CHARACTERIZATION OF AMPROTAB WITH HYDROXYPROPYL METHYLCELLULOSE USING CITRIC ACID AS CROSSLINKING AGENT. International Journal of Applied Pharmaceutics, 16(5), 43–53. https://doi.org/10.22159/ijap.2024v16s5.52487

Issue

Section

Original Article(s)

Most read articles by the same author(s)

<< < 1 2 3