ULTRA-FAST SYNTHESIS OF CURCUMIN-LOADED SILVER NANOPARTICLES: IMPROVED PHYSICOCHEMICAL PROPERTIES FOR DRUG DELIVERY

Authors

  • CHONG XUE LI Faculty of Pharmacy and BioMedical Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
  • GAMAL OSMAN ELHASSAN Department of Pharmaceutics, College of Pharmacy, Qassim University, Buriadah, K. S. A. https://orcid.org/0000-0001-9116-2520
  • SIHAM A. ABDOUN Department of Pharmaceutics, College of Pharmacy, Qassim University, Buriadah, K. S. A. https://orcid.org/0000-0001-8970-3236
  • RIYAZ AHMED KHAN Department of Pharmaceutics, College of Pharmacy, Qassim University, Buriadah, K. S. A.
  • MANOJ GOYAL Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Dammam, Saudi Arabia
  • MONIKA BANSAL Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Dammam, Saudi Arabia
  • JAMAL MOIDEEN MUTHU MOHAMED Faculty of Pharmacy and BioMedical Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia https://orcid.org/0000-0001-6362-8629

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52647

Keywords:

Drug delivery, green synthesis, Drug formulation, AgNPs, Curcumin, In vitro study, Garlic extract

Abstract

Objective: This study focused on the green synthesis of silver nanoparticles (AgNPs) using fresh garlic extract (Allium sativum-AS) as a reducing agent for the efficient delivery of curcumin (CuR), a natural anti-cancer agent used in breast cancer therapy.

Methods: The study began with the preparation of fresh AS, which was then mixed with silver nitrate (AgNO₃) solution and CuR solution under sunlight for the green synthesis of stable CuR-loaded nanoparticles (C-AgNPs). This method not only offered an eco-friendly approach to the synthesis of C-AgNPs but also highlighted the potential physicochemical characterization of AS and CuR in this context. Moreover, this study assesses the characteristics of the resulting C-AgNPs and conducts a comparative analysis with different formulations to evaluate their efficacy.

Results: The prepared C-AgNPs, characterized by Fourier-Transform Infrared Spectroscopy (FTIR), indicated that CuR, silver nitrate (AgNO₃), and AS extract were successfully incorporated, confirming the successful synthesis. The optimized preparation, referred to as AgNP1, demonstrated an entrapment efficacy of 74.24±5.87%, a drug loading of 95.99±7.81%, and a drug content of 96.11±7.82%. Additionally, the cumulative percentage of drug release was found to be 57.12±2.76% at 180 min. The drug was successfully loaded into the C-AgNPs, exhibiting physicochemical compatibility without any adverse chemical interactions with the additives used.

Conclusion: In conclusion, this study demonstrated that nanoparticle-based drug delivery systems offer a significant advancement over conventional therapies by providing controlled and efficient drug delivery, thereby improving therapeutic outcomes.

Downloads

Download data is not yet available.

References

Khan I, Saeed K, Khan I. Nanoparticles: properties applications and toxicities. Arab J Chem. 2019;12(7):908-31. doi: 10.1016/j.arabjc.2017.05.011.

Azhar M, Mishra A. Review of nanoemulgel for treatment of fungal infections. Int J Pharm Pharm Sci. 2024;16(9):8-17. doi: 10.22159/ijpps.2024v16i9.51528.

Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ. Advances in drug delivery systems challenges and future directions. Heliyon. 2023;9(6):e17488. doi: 10.1016/j.heliyon.2023.e17488, PMID 37416680.

Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez Torres MD, Acosta Torres LS. Nano-based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi: 10.1186/s12951-018-0392-8, PMID 30231877.

Sharifi Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food pharmaceutical biotechnological and medicinal applications. Front Pharmacol. 2020;11:01021. doi: 10.3389/fphar.2020.01021, PMID 33041781.

Adarsa S, Babu AS, Sunil S, Jomine Jose J. Axillary lymph node metastasis in sonologically node-negative breast carcinoma. Asian J Pharm Clin Res. 2024;17(10):26-9. doi: 10.22159/ajpcr.2024v17i10.52192.

Shang A, Cao SY, XU XY, Gan RY, Tang GY, Corke H. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019;8(7):246. doi: 10.3390/foods8070246, PMID 31284512.

Melguizo Rodriguez L, Garcia Recio E, Ruiz C, DE Luna Bertos E, Illescas Montes R, Costela Ruiz VJ. Biological properties and therapeutic applications of garlic and its components. Food Funct. 2022;13(5):2415-26. doi: 10.1039/d1fo03180e, PMID 35174827.

Elfiyani R, Radjab NS, Wijaya AN. Garlic extract phytosome: preparation and physical stability. Int J App Pharm. 2024;16(1):118-25. doi: 10.22159/ijap.2024.v16s1.27.

Pandey P, Khan F, Alshammari N, Saeed A, Aqil F, Saeed M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: plant therapeutics in cancer management. Front Pharmacol. 2023 Mar 20;14:1154034. doi: 10.3389/fphar.2023.1154034, PMID 37021043.

Bhardwaj B, Singh P, Kumar A, Kumar S, Budhwar V. Eco-friendly greener synthesis of nanoparticles. Adv Pharm Bull. 2020;10(4):566-76. doi: 10.34172/apb.2020.067, PMID 33072534.

Mohamed JM, Alqahtani A, Ahmad F, Krishnaraju V, Kalpana K. Stoichiometrically governed curcumin solid dispersion and its cytotoxic evaluation on colorectal adenocarcinoma cells. Drug Des Devel Ther. 2020 Nov 2;14:4639-58. doi: 10.2147/DDDT.S273322, PMID 33173275.

LI G, MA X, Deng L, Zhao X, Wei Y, Gao Z. Fresh garlic extract enhances the antimicrobial activities of antibiotics on resistant strains in vitro. Jundishapur J Microbiol. 2015;8(5):e14814. doi: 10.5812/jjm.14814, PMID 26060559.

Asif M, Yasmin R, Asif R, Ambreen A, Mustafa M, Umbreen S. Green synthesis of silver nanoparticles (AgNPs) structural characterization and their antibacterial potential. Dose Response. 2022 Apr 30;20(2):15593258221088709. doi: 10.1177/15593258221088709, PMID 35592270.

Muthu J, Ahmad F, Kishore N, Al Subaie AM. Soluble 1: 1 stoichiometry curcumin binary complex for potential apoptosis in human colorectal adenocarcinoma cells (SW480 and CACO-2 cells). Res J Pharm Technol. 2021;14(1):129-35. doi: 10.5958/0974-360X.2021.00023.8.

Mohamed JM, Alqahtani A, Kumar TV, Fatease AA, Alqahtani T, Krishnaraju V. Superfast synthesis of stabilized silver nanoparticles using aqueous Allium sativum (garlic) extract and isoniazid hydrazide conjugates: molecular docking and in vitro characterizations. Molecules. 2021;27(1):110. doi: 10.3390/molecules27010110, PMID 35011342.

Alqahtani A, Raut B, Khan S, Mohamed JM, Fatease AA, Alqahtani T. The unique carboxymethyl fenugreek gum gel loaded itraconazole self-emulsifying nanovesicles for topical onychomycosis treatment. Polymers (Basel). 2022;14(2). doi: 10.3390/polym14020325, PMID 35054731.

Mohamed JM, Ahmad F, Alqahtani A, Lqahtani T, Raju VK, Anusuya M. Studies on preparation and evaluation of soluble 1:1 stoichiometric curcumin complex for colorectal cancer treatment. Trends Sci. 2021;18(24):1403. doi: 10.48048/tis.2021.1403.

Bodke V, Kumbhar P, Belwalkar S, Mali AS, Waghmare K. Design and development of nanoemulsion of smilax china for anti-psoriasis activity. Int J Pharm Pharm Sci. 2024;16(5):54-66. doi: 10.22159/ijpps.2024v16i5.50327.

Mohamed JM, Alqahtani A, Khan BA, Al Fatease A, Alqahtani T, Venkatesan K. Preparation of soluble complex of curcumin for the potential antagonistic effects on human colorectal adenocarcinoma cells. Pharmaceuticals (Basel). 2021;14(9):939. doi: 10.3390/ph14090939, PMID 34577638.

Mohamed JM, Alqahtani A, Ahmad F, Krishnaraju V, Kalpana K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr Polym. 2021;252:117180. doi: 10.1016/j.carbpol.2020.117180, PMID 33183627.

Gautham U, Patil A, Hemanth G. Formulation and evaluation of nanoparticle drug delivery system for treatment of hypertension. Int J App Pharm. 2023;15(6):90-7. doi: 10.22159/ijap.2023v15i6.48971.

Almalla A, Elomaa L, Bechtella L, Daneshgar A, Yavvari P, Mahfouz Z. Papain-based solubilization of decellularized extracellular matrix for the preparation of bioactive thermosensitive pregels. Biomacromolecules. 2023;24(12):5620-37. doi: 10.1021/acs.biomac.3c00602, PMID 38009757.

Mohamed JM, Alqahtani A, Kumar TV, Fatease AA, Alqahtani T, Krishnaraju V. Superfast synthesis of stabilized silver nanoparticles using aqueous allium sativum (garlic) extract and isoniazid hydrazide conjugates: molecular docking and in vitro characterizations. Molecules. 2021;27(1):110. doi: 10.3390/molecules27010110, PMID 35011342.

FU Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429-44. doi: 10.1517/17425241003602259, PMID 20331353.

Bayer IS. Controlled drug release from nanoengineered polysaccharides. Pharmaceutics. 2023;15(5):1364. doi: 10.3390/pharmaceutics15051364, PMID 37242606.

M Ewedah T, El nabarawi M, H Teaima M, Elhabal SF, R Shoueir K, Hamdy AM. Development and optimization of the wound healing electrospun polyurethane/collagen/phytoceramides nanofibers using the box behnken experimental design) quality by design). Int J App Pharm. 2024;16(5):99-100. doi: 10.22159/ijap.2024v16i5.51510.

Published

07-01-2025

How to Cite

LI, C. X., ELHASSAN, G. O., ABDOUN, S. A., KHAN, R. A., GOYAL, M., BANSAL, M., & MOHAMED, J. M. M. (2025). ULTRA-FAST SYNTHESIS OF CURCUMIN-LOADED SILVER NANOPARTICLES: IMPROVED PHYSICOCHEMICAL PROPERTIES FOR DRUG DELIVERY. International Journal of Applied Pharmaceutics, 17(1), 216–223. https://doi.org/10.22159/ijap.2025v17i1.52647

Issue

Section

Original Article(s)

Most read articles by the same author(s)