NANOTECHNOLOGY FOR OPHTHALMIC PREPARATIONS

Authors

  • Hamsika M. Dept. of Pharmaceutics, JSS University, JSS College of Pharmacy, SS Nagara, Mysore 570015, Karnataka, India
  • D. V. Gowda Dept. of Pharmaceutics, JSS University, JSS College of Pharmacy, SS Nagara, Mysore 570015, Karnataka, India
  • Jigyasa Vindru Dept. of Pharmaceutics, JSS University, JSS College of Pharmacy, SS Nagara, Mysore 570015, Karnataka, India
  • Afrasim Moin Department of Pharmaceutics, College of Pharmacy, Hail University, Hail 81442, Saudi Arabia

Keywords:

Nanosuspensions, Ocular drug delivery, Nanoparticulate

Abstract

Despite numerous efforts, ocular drug delivery still remains a challenge for pharmaceutical scientists. Most of the ocular diseases are treated by topical drug applications. But this suffers from poor bioavailability and other drawbacks. Budding interest in nanopharmaceuticals has generated a number of advancements throughout recent years with a focus on engineering novel applications. Nanotechnology also offers the ability to detect diseases at much earlier stages. Recent developments in ocular drug delivery system research have provided new insights into drug development. This review summarizes recent findings and applications of various nanoparticulate systems like nanospheres, nanosuspensions, microemulsions, liposome, etc in ocular drug delivery.

Downloads

Download data is not yet available.

References

Diebold Y, Jarrín M, Sáez V, Carvalho EL, Orea M. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007;28:1553-64.

Baba K, Tanaka Y, Kubota A, Kasai H, Yokokura S. A method for enhancing the ocular penetration of eye drops using nanoparticles of hydrolyzable dye. J Controlled Release 2011;153:278-87.

Li X, Zhang Z, Li J, Sun S, Weng Y. Diclofenac/biodegradable polymer micelles for ocular applications. Nanoscale 2012;4:4667-73.

Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermo responsive diclofenac sodium ophthalmic in situ gels. Int J Pharm 2011;411:128-35.

Mahmoud AA, El-Feky GS, Kamel R, Awad GE. Chitosan/sulfobutyletherβ-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int J Pharm 2011;413:229-36.

Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech 2009;10:808-19.

El-Kamel AH. In vitro and in vivo evaluation of a pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm 2002;241:47-55.

Sultana Y, Aqil M, Ali A. Ion-activated, gelrite-based in situ ophthalmic gels of pefloxacin mesylate: comparison with conventional eye drops. Drug Delivery 2006;13:215-9.

Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Targeting 2011;19:409-17.

Casolaro M, Casolaro I, Lamponi S. Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery. Eur J Pharm Biopharm 2012;80:553-61.

Davies NM, Farr SJ, Hadgraft J, Kellaway IW. Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharm Res 1991;8:1039-43.

Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci 2012;12:608-20.

Rahul M, Mohita U, Sanat M. Design considerations for chemotherapeutic drug nanocarriers. Pharm Anal Acta 2014;5:279.

Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS. Nanoparticles in the ocular drug delivery. Int J Ophthalmol 2013;6:390-6.

Rafie F, Javadzadeh Y, Javadzadeh AR, Ghavidel LA, Jafari B. In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res 2010;35:1081-9.

Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer R. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm Res 1991;8:713-20.

Tomoda K, Watanabe A, Suzuki K, Inagi T, Terada H. Enhanced transdermal permeability of estradiol using a combination of PLGA nanoparticles system and iontophoresis. Colloids Surf B 2012;97:84-9.

Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H. Enhanced transdermal delivery of indomethacin using a combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf B 2012;92:50-4.

Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H. Enhanced transdermal delivery of indomethacin-loaded PLGA nanoparticles by iontophoresis. Colloids Surf B 2011;88:706-10.

Adibi SA. Renal assimilation of oligopeptides: physiological mechanisms and metabolic importance. Am J Physiol 1997;272:E723–36.

Anand BS, Mitra AK. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res 2002;19:1194–202.

Ocheltree SM, Keep RF, Shen H, Yang D, Hughes BA, Smith DE. A preliminary investigation into the expression of proton-coupled oligopeptide transporters in neural retina and retinal pigment epithelium (RPE): lack of functional activity in RPE plasma membranes. Pharm Res 2003;20:1364–72.

Atluri H, Anand BS, Patel J, Mitra AK. Mechanism of a model dipeptide transport across blood-ocular barriers following systemic administration. Exp Eye Res 2004;78:815–22.

Dias C, Nashed Y, Atluri H, Mitra A. Ocular penetration of acyclovir and its peptide prodrugs valacyclovir and valval acyclovir following systemic administration in rabbits: an evaluation using ocular microdialysis and LC–MS. Curr Eye Res 2002;25:243–52.

Winkler BS. Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol 1981;77:667–92.

Merriman-Smith R, Donaldson P, Kistler J. Differential expression of facilitative glucose transporters GLUT1 and GLUT3 in the lens. Invest Ophthalmol Visual Sci 1999;40:3224–30.

Mantych GJ, Hageman GS, Devaskar SU. Characterization of glucose transporter isoforms in the adult and developing a human eye. Endocrinology. 1993;133:600–7.

Brubaker RF, Bourne WM, Bachman LA, McLaren JW. Ascorbic acid content of human corneal epithelium. Invest Ophthalmol Visual Sci 2000;41:1681–3.

Liang WJ, Johnson D, Jarvis SM. Vitamin C transport systems of mammalian cells. Mol Membr Biol 2001;18:87–95.

Kanai Y, Hediger MA. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 2004;447:469–79.

Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, Kim DK, Matsuo H, et al. Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D-and L-amino acids. J Biol Chem 2000;275:9690–8.

Verrey F, Meier C, Rossier G, Kuhn LC. Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Pflugers Arch 2000;440:503–12.

Gandhi MD, Pal D, Mitra AK. Identification and functional characterization of a Na(+)-independent large neutral amino acid transporter (LAT2) on ARPE-19 cells. Int J Pharm 2004;275:189–200.

Jain-Vakkalagadda B, Pal D, Gunda S, Nashed Y, Ganapathy V, Mitra AK. Identification of a Na+-dependent cationic and neutral amino acid transporter, B(0,+), in human and rabbit cornea. Mol Pharm 2004;1:338–46.

Ganapathy ME, Ganapathy V. Amino acid transporter ATB0,+as a delivery system for drugs and prodrugs. Curr Drug Targets: Immune Endocr Metab Disord 2005;5:357–64.

Eytan GD, Kuchel PW. Mechanism of action of P-glycoprotein in relation to passive membrane permeation. Int Rev Cytol 1999;190:175–250.

Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001;11:1156–66.

Sarkadi B, Homolya L, Szakacs G, Varadi A. Human multidrug resistance ABCB and ABCG transporters: participation in a them immunity defense system. Physiol Rev 2006;86:1179–236.

Sharom FJ. ABC multidrug transporters: structure, function, and role in chemoresistance. Pharmacogenomics 2008;9:105–27.

Bellamy WT. P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol 1996;36:161–83.

Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385–427.

Saha P, Yang JJ, Lee VH. Existence of a p-glycoprotein drug efflux pumps in cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Visual Sci 1998;39:1221–6.

Wu J, Zhang JJ, Koppel H, Jacob TJ. P-glycoprotein regulates a volume-activated chloride current in bovine non-pigmented ciliary epithelial cells. J Physiol 1996;491:743–55.

Dey S, Patel J, Anand BS, Jain-Vakkalagadda B, Kaliki P, Pal D, Ganapathy V, et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Visual Sci 2003;44:2909–18.

Holash JA, Stewart PA. The relationship of astrocyte-like cells to the vessels that contribute to the blood-ocular barriers. Brain Res 1993;629:218–24.

Constable PA, Lawrenson JG, Dolman DE, Arden GB, Abbott NJ. P-Glycoprotein expression in human retinal pigment epithelium cell lines. Exp Eye Res 2006;83:24–30.

Roelofsen H, Hooiveld GJ, Koning H, Havinga R, Jansen PL, Muller M. Glutathione S-conjugate transport in hepatocytes entering the cell cycle is preserved by a switch in expression from the apical MRP2 to the basolateral MRP1 transporting protein. J Cell Sci 1999;112:1395–404.

Yang JJ, Ann DK, Kannan R, Lee VH. Multidrug resistance protein 1 (MRP1) in rabbit conjunctival epithelial cells: its effect on drug efflux and its regulation by adenoviral infection. Pharm Res 2007;24:1490–500.

Kruh GD, Guo Y, Hopper-Borge E, Belinsky MG, Chen ZS. ABCC10, ABCC11, and ABCC12. Pflugers Arch 2007;453:675–84.

Aukunuru JV, Sunkara G, Bandi N, Thoreson WB, Kompella UB. Expression of multidrug resistance-associated protein (MRP) in human retinal pigment epithelial cells and its interaction with BAPSG, a novel aldose reductase inhibitor. Pharm Res 2001;18:565–72.

Steuer H, Jaworski A, Elger B, Kaussmann M, Keldenich J, Schneider H, et al. Functional characterization and comparison of the outer blood–retina barrier and the blood–brain barrier. Invest Ophthalmol Visual Sci 2005;46:1047–53.

Karla PK, Pal D, Quinn T, Mitra AK. Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int J Pharm 2007;336:12–21.

Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos 2008;36:1300–7.

Shirasaki Y. Molecular design for enhancement of ocular penetration. J Pharm Sci 2008;97:2462–96.

Gunda S, Hariharan S, Mitra AK. Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): in vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits. J Ocul Pharmacol Ther 2006;22:465–76.

Majumdar S, Nashed YE, Patel K, Jain R, Itahashi M, Neumann DM, et al. Dipeptide monoester ganciclovir prodrugs for treating HSV-1-induced corneal epithelial and stromal keratitis: in vitro and in vivo evaluations. J Ocul Pharmacol Ther 2005;21:463–74.

Kansara V, Hao Y, Mitra AK. Dipeptide monoester ganciclovir prodrugs for transscleral drug delivery: targeting the oligopeptide transporter on rabbit retina. J Ocul Pharmacol Ther 2007;23:321–34.

Janoria KG, Mitra AK. Effect of lactide/glycolide ratio on the in vitro release of ganciclovir and its lipophilic prodrug (GCV-mono butyrate) from PLGA microspheres. Int J Pharm 2007;338:133–41.

Anand BS, Hill JM, Dey S, Maruyama K, Bhattacharjee PS, Myles ME, et al. In vivo antiviral efficacy of a dipeptide acyclovir prodrug, val-valacyclovir, against HSV-1 epithelial and stromal keratitis in the rabbit eye model. Invest Ophthalmol Visual Sci 2003;44:2529–34.

Katragadda S, Talluri RS, Mitra AK. Modulation of P-glycoprotein-mediated efflux by prodrug derivatization: an approach involving peptide transporter-mediated influx across rabbit cornea. J Ocul Pharmacol Ther 2006;22:110–20.

Doukas J, Mahesh S, Umeda N, Kachi S, Akiyama H, Yokoi K, et al. Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovascularization and retinal edema. J Cell Physiol 2008;216:29–37.

Al-Ghananeem AM, Crooks PA. Phase I and phase II ocular, metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules 2007;12:373–88.

Lallem F, Varesio E, Felt-Baeyens O, Bossy L, Hopfgartner G, Gurny R. Biological conversion of a water-soluble prodrug of cyclosporine. A Eur J Pharm Biopharm 2007;67:555–61.

Juntunen J, Jarvinen T, Niemi R. In vitro corneal permeation of cannabinoids and their water-soluble phosphate ester prodrugs. J Pharm Pharmacol 2005;57:1153–7.

Nambu H, Nambu R, Melia M, Campochiaro PA. Combretastatin A-4 phosphate suppresses development and induces regression of choroidal neovascularization. Invest Ophthalmol Visual Sci 2003;44:3650–5.

Takahashi K, Saishin Y, Saishin Y, Mori K, Ando A, Yamamoto S, et al. Topical nepafenac inhibits ocular neovascularization. Invest Ophthalmol Visual Sci 2003;44:409–15.

Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y. Drug delivery systems for vitreoretinal diseases. Prog Retinal Eye Res 2004;23:253–81.

Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 2005;6:3–5.

Vandervoort J, Ludwig A. Ocular drug delivery: nanomedicine applications. Nanomed 2007;2:11–21.

Ansari MJ, Kohli K, Dixit N. Microemulsions as potential drug delivery systems: a review. PDA J Pharm Sci Technol 2008;62:66–79.

Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retinal Eye Res 2002;21:15–34.

Hasse A, Keipert S. Development and characterization of microemulsions for ocular application. Eur J Pharm Biopharm 1997;43:179–83.

Chan J, Maghraby GM, Craig JP, Alany RG. Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation. Int J Pharm 2007;328:65–71.

Li CC, Abrahamson M, Kapoor Y, Chauhan A. Timolol transport from microemulsions trapped in HEMA gels. J Colloid Interface Sci 2007;315:297–306.

Buech G, Bertelmann E, Pleyer U, Siebenbrodt I, Borchert HH. Formulation of sirolimus eye drops and corneal permeation studies. J Ocul Pharmacol Ther 2007;23:292–303.

Kaur IP, Kanwar M. Ocular preparations: the formulation approach. Drug Dev Ind Pharm 2002;28:473–93.

Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 2002;23:3247-55.

Adibkia K, Omidi Y, Siahi MR, Javadzadeh AR, Barzegar-Jalali M, Barar J, et al. Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits. J Ocul Pharmacol Ther 2007;23:421–32.

Adibkia K, Siahi Shadbad MR, Nokhodchi A, Javadzedeh A, Barzegar-Jalali M, Barar J, et al. Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis. J Drug Target 2007;15:407–16.

Kassem MA, Abdel-Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 2007;340:126–33.

Pignatello R, Ricupero N, Bucolo C, Maugeri F, Maltese A, Puglisi G. Preparation and characterization of eudragit retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech 2006;7:E27.

Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Visual Sci 2003;44:3562–9.

Sakurai E, Ozeki H, Kunou N, Ogura Y. Effect of particle size of polymeric nanospheres on intravitreal kinetics. Ophthalmic Res 2001;33:31–6.

Li VH, Wood RW, Kreuter J, Harmia T, Robinson JR. Ocular drug delivery of progesterone using nanoparticles. J Microencapsul 1986;3:213–8.

Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as an ocular delivery system for tobramycin. Int J Pharm 2002;238:241–5.

Amrite AC, Edelhauser HF, Singh SR, Kompella UB. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Visual 2008;14:150–60.

Irache JM, Merodio M, Arnedo A, Camapanero MA, Mirshahi M, Espuelas S. Albumin nanoparticles for the intravitreal delivery of anti cytomegaloviral drugs. Mini Rev Med Chem 2005;5:293–305.

Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci 1996;85:530–6.

De Campos AM, Sanchez A, Gref R, Calvo P, Alonso MJ. The effect of a PEG versus a chitosan coating on the interaction of colloidal drug carriers with the ocular mucosa. Eur J Pharm Sci 2003;20:73–81.

Xu J, Wang Y, Li Y, Yang X, Zhang P, Hou H, et al. Inhibitory efficacy of intravitreal dexamethasone acetate-loaded PLGA nanoparticles on choroidal neovascularization in a laser-induced rat model. J Ocul Pharmacol Ther 2007;23:527–40.

Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterisation. Eur J Pharm Biopharm 2008;68:513–25.

Moshfeghi AA, Peyman GA. Micro-and nano particulates. Adv Drug Delivery Rev 2005;57:2047–52.

Bejjani RA, Ben Ezra D, Cohen H, Rieger J, Andrieu C, Jeanny JC, et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Visual 2005;11:124–32.

Arnedo A, Irache JM, Merodio M, Espuelas Millan MS. Albumin nanoparticles improved the stability, nuclear accumulation and anti cytomegaloviral activity of a phosphodiester oligonucleotide. J Controlled Release 2004;94:217–27.

Khan A, Sommer W, Fuxe K, Akhtar S. Site-specific administration of antisense oligonucleotides using biodegradable polymer microspheres provides sustained delivery and improved subcellular biodistribution in the neostriatum of the rat brain. J Drug Targeting 2000;8:319–34.

De Rosa G, Quaglia F, Bochot A, Ungaro F, Fattal E. Long-term release and improved intracellular penetration of oligonucleotide-polyethyleneimine complexes entrapped in biodegradable microspheres. Biomacromolecules 2003;4: 529–36.

Gomes dos Santos AL, Bochot A, Doyle A, Tsapis N, Siepmann J, Siepmann F, et al. Sustained release of nanosized complexes of polyethyleneimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. J Controlled Release 2006;112:369–81.

Carrasquillo KG, Ricker JA, Rigas IK, Miller JW, Gragoudas ES, Adamis AP. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Visual Sci 2003;44:290–9.

Shen Y, Tu J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. Aaps J 2007;9:E371–377.

Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discovery Today 2008;13:144–51.

Published

07-04-2016

How to Cite

M., H., D. V. Gowda, J. Vindru, and A. Moin. “NANOTECHNOLOGY FOR OPHTHALMIC PREPARATIONS”. International Journal of Current Pharmaceutical Research, vol. 8, no. 2, Apr. 2016, pp. 5-11, https://mail.innovareacademics.in/journals/index.php/ijcpr/article/view/12099.

Issue

Section

Review Article(s)