TYPES AND APPLICATION OF PHARMACEUTICAL NANOTECHNOLOGY: A REVIEW

Authors

  • SARVAN Department of Pharmaceutical Sciences, HIMT College of Pharmacy, Greater Noida-201301, U. P., India
  • HEMANT VASHISTH Department of Pharmaceutical Sciences, HIMT College of Pharmacy, Greater Noida-201301, U. P., India

DOI:

https://doi.org/10.22159/ijcpr.2023v15i3.3010

Keywords:

Nano-particles, Pharmaceutics nano-medicine, Cancer treatment, Future of nanotechnology

Abstract

The already enormous health industry will continue to expand as baby boomers begin to enter retirement. Pharmaceutical companies will create new technologies in response to patient expectations, given the size of the customer base and the increasing demand. As pharmaceuticals get more complex and hazardous, new distribution strategies are needed to get them to the correct areas of the body. As a result, well-known pharmaceutical companies are utilising cutting-edge methodologies and technology. One of the most comprehensive technologies is pharmaceutical nanotechnology. Pharmaceutical nanotechnology offers new opportunities, tools, and breadth that are expected to have a big influence on a lot of areas of illness diagnosis and treatment. Pharmaceutical nanotechnology has opportunities to improve materials and medical technology as well as to contribute to the advancement of technology in fields where more seasoned and conventional technologies may be nearing their limits. In conclusion, recent developments, the commercialization of several pharmaceutical nano-tools, and the rising interest of academics, governments, and corporations ensure that nano-based drug delivery systems in the near future have immense potential and range.

Downloads

Download data is not yet available.

References

Prachayasittikul V, Worachartcheewan A, Shoombuatong W, Songtawee N, Simeon S, Prachayasittikul V. Computer-aided drug design of bioactive natural products. Curr Top Med Chem. 2015 Sep 1;15(18):1780-800. doi: 10.2174/1568026615666150506151101, PMID 25961523.

Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016 Mar 9;116(5):2826-85. doi: 10.1021/acs.chemrev.5b00148, PMID 26799741.

Kinnear C, Moore TL, Rodriguez Lorenzo L, Rothen Rutishauser B, Petri Fink A. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev. 2017 Sep 13;117(17):11476-521. doi: 10.1021/acs.chemrev.7b00194, PMID 28862437.

Mattos BD, Tardy BL, Magalhaes WLE, Rojas OJ. Controlled release for crop and wood protection: recent progress toward sustainable and safe nanostructured biocidal systems. J Control Release. 2017 Sep 28;262:139-50. doi: 10.1016/j.jconrel.2017.07.025, PMID 28739450.

Ding C, Li Z. A review of drug release mechanisms from nanocarrier systems. Mater Sci Eng C Mater Biol Appl. 2017 Jul 1;76:1440-53. doi: 10.1016/j.msec.2017.03.130, PMID 28482511.

Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015 Mar 24;125:75-84. doi: 10.1016/j.ces.2014.08.046, PMID 25684779.

Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera Fernandez S. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015 Jul 28;9(7):6996-7008. doi: 10.1021/acsnano.5b01326, PMID 26079146.

Almalik A, Benabdelkamel H, Masood A, Alanazi IO, Alradwan I, Majrashi MA. Hyaluronic acid-coated chitosan nanoparticles reduced the immunogenicity of the formed protein corona. Sci Rep. 2017 Sep 5;7(1):10542. doi: 10.1038/s41598-017-10836-7, PMID 28874846.

Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target. 2015 Sep 14;23(7-8):619-26. doi: 10.3109/1061186X.2015.1052074, PMID 26453159.

Saha D, Hosen SM, Paul S. Pharmaceutical nanotechnology: strategies and techniques of drug therapy, disease and delivery through pharmaceutical biotechnology. University of Mauritius Research Journal. 2015 Sep 14;21.

Wagner V, Husing B, Gaisser S, Bock AK. Nanomedicine: drivers for development and possible impacts. JRC-IPTS EUR. 2008;23494.

Khuspe P, Kokate K, Mandhare T, Nangre P, Rathi B. A comprehensive review on novel pharmaceutical nanotechnology and its applications; Indo-American Journal of Pharmaceutical Sciences. 2017;4(12):4640-7.

Jain A, Jain SK. Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit Rev Ther Drug Carrier Syst. 2015;32(2):149-80. doi: 10.1615/critrevtherdrugcarriersyst.2015010903, PMID 25955883.

Wang T, Hou J, Su C, Zhao L, Shi Y. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J Nanobiotechnology. 2017 Dec;15(1):7. doi: 10.1186/s12951-016-0245-2, PMID 28068992.

Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol. 2001 Dec;19(12):1141-7. doi: 10.1038/nbt1201-1141, PMID 11731783.

Heymer A, Haddad D, Weber M, Gbureck U, Jakob PM, Eulert J. Iron oxide labeling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials. 2008 Apr 1;29(10):1473-83. doi: 10.1016/j.biomaterials.2007.12.003, PMID 18155133.

Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin Drug Deliv. 2010 Jan 1;7(1):49-62. doi: 10.1517/17425240903380446, PMID 20017660.

Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017 Sep;21(9):1668-86. doi: 10.1111/jcmm.13110, PMID 28244656.

Bai Y, Xie FY, Tian W. Controlled self-assembly of thermo-responsive amphiphilic h-shaped polymer for adjustable drug release. Chin J Polym Sci. 2018 Mar;36(3):406-16. doi: 10.1007/s10118-018-2086-y.

Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release. 2018 Feb 28;272:145-58. doi: 10.1016/j.jconrel.2017.04.028, PMID 28442407.

Mathiyazhakan M, Wiraja C, Xu C. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nanomicro Lett. 2018 Jan;10(1):10. doi: 10.1007/s40820-017-0166-0, PMID 30393659.

Van Vlerken LE, Amiji MM. Multi-functional polymeric nanoparticles for tumor-targeted drug delivery. Expert Opin Drug Deliv. 2006 Mar 1;3(2):205-16. doi: 10.1517/17425247.3.2.205, PMID 16506948.

Chetty CM. Nanomedicine and drug delivery-revolution in health system. J Glob Trends Pharm Sci. 2011 Jan;2(1):21-30.

Sharma A. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997 Aug 26;154(2):123-40. doi: 10.1016/S0378-5173(97)00135-X.

Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008 May;83(5):761-9. doi: 10.1038/sj.clpt.6100400, PMID 17957183.

Grillo R, Gallo J, Stroppa DG, Carbo Argibay E, Lima R, Fraceto LF. Sub-micrometer magnetic nanocomposites: insights into the effect of magnetic nanoparticles interactions on the optimization of SAR and MRI performance. ACS Appl Mater Interfaces. 2016 Oct 5;8(39):25777-87. doi: 10.1021/acsami.6b08663, PMID 27595772.

Chen CW, Syu WJ, Huang TC, Lee YC, Hsiao JK, Huang KY. Encapsulation of Au/Fe3O4 nanoparticles into a polymer nanoarchitecture with combined near infrared-triggered chemo-photothermal therapy based on intracellular secondary protein understanding. J Mater Chem B. 2017;5(29):5774-82. doi: 10.1039/c7tb00944e, PMID 32264211.

Du X, Shi B, Liang J, Bi J, Dai S, Qiao SZ. Developing functionalized dendrimer‐like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers. Adv Mater. 2013 Nov;25(41):5981-5. doi: 10.1002/adma.201302189, PMID 23955990.

Kumar H, Venkatesh N, Bhowmik H, Kuila A. Metallic nanoparticle: a review. Biomed J Sci Tech Res. 2018;4(2):3765-75.

Kumari B. Ocular drug delivery system: approaches to improve ocular bioavailability. GSC Biol Pharm Sci. 2019;6(3):1-10. doi: 10.30574/gscbps.2019.6.3.0030.

Fernandez Urrusuno R, Calvo P, Remunan Lopez C, Vila Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999 Oct;16(10):1576-81. doi: 10.1023/a:1018908705446, PMID 10554100.

Al-Qadi S, Grenha A, Carrion Recio D, Seijo B, Remunan Lopez C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012 Feb 10;157(3):383-90. doi: 10.1016/j.jconrel.2011.08.008, PMID 21864592.

Madaan T, Pandey S, Talegaonkar S. Nanotechnology: A smart drug delivery tool in modern healthcare. J Chem Pharm Res. 2015;7(6):257-64.

Haque SS, Sahni JK, Ali J, Baboota S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. Journal of Psychiatric Research. 2014 Jan 1;48(1):1-2.

Laffleur F, Michalek M. Modified xanthan gum for buccal delivery-a promising approach in treating sialorrhea. Int J Biol Macromol. 2017 Sep 1;102:1250-6. doi: 10.1016/j.ijbiomac.2017.04.123, PMID 28487193.

Abo-Elseoud WS, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol. 2018 May 1;111:604-13. doi: 10.1016/j.ijbiomac.2018.01.044, PMID 29325745.

Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975-99. doi: 10.2147/IJN.S68861, PMID 25678787.

Dimov N, Kastner E, Hussain M, Perrie Y, Szita N. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci Rep. 2017 Sep 21;7(1):12045. doi: 10.1038/s41598-017-11533-1, PMID 28935923.

Imam SS, Agarwal S. A pragmatic approach to treat lung cancer through loading theaflavin -3,3’-digallate and epigallocatechin gallate in spanlastic. Asian J Pharm Clin Res. 2021 Nov 7;14(11):1-8. doi: 10.22159/ajpcr.2021.v14i11.42757.

Imam SS. The future of non-invasive ways to treat cancer. Int J Pharm Sci Res. 2021;12(8):4684-96. doi: 10.13040/IJPSR.0975-8232.12(8).4684-96.

Imam SS, Imam ST, Mdwasifathar KR, Kumar R, Ammar MY. Interaction between ace 2 and Sars-Cov2, and use of EGCG and the aflavin to treat Covid 19 in initial phases. Int J Curr Pharm Sci. 2022 Mar;14(2):5-10. doi: 10.22159/ijcpr.2022v14i2.1945.

Imam SS, Sharma R. Natural compounds promising way to treat Lung Cancer. Int J Pharm Res Appl. 2023;8(2):552-8.

Imam SS, Sharma S, Kumari D, Khan S, Pathak P, Katiyar D. An expedient approach to treat asthma through nonsteroidal, natural transferosomes aerosol system. Innovare J Med Sci. 2022;10(6):7-11.

Imam SS, Imam ST, Agarwal S, Kumar R, Ammar MY, Athar MW. Lung cancer therapy using naturally occurring products and nanotechnology. Innovare J Med Sci. 2022;10(4):1-5. doi: 10.22159/ijms.2022.v10i4.44993.

Published

15-05-2023

How to Cite

SARVAN, and H. VASHISTH. “TYPES AND APPLICATION OF PHARMACEUTICAL NANOTECHNOLOGY: A REVIEW”. International Journal of Current Pharmaceutical Research, vol. 15, no. 3, May 2023, pp. 14-18, doi:10.22159/ijcpr.2023v15i3.3010.

Issue

Section

Review Article(s)