Algal research in space: History, current status and future prospects
Abstract
The aim of this article is to give a brief review of the history and current status of research experiments with cyanobacteria, algae and lichens concerning their adaptation in space or their potential use for the needs of astronauts. The future of algological space research is also being discussed with regard to creating self-sustainable stations and terraformation of Mars.
References
Harder R, von Witsch H. Bericht über Versuche zur Fettsynthese mittels autotropher Microorganismen. Forschungsdienst Sonderheft 1942; 16:270–275.
Harder R, von Witsch H. Die Massenkultur von Diatomeen. Ber Deutsch Bot Ges 1942; 60:146–152.
Spoehr HA. Chlorella as a source of food. Proc Am Phil Soc 1951; 95:62.
Lockhart JA. The Care and Feeding of Spacemen. Engineering and Science 1959; 22(8):11-13.
Gafford RD, Richardson DE. Mass algal culture in space operations. J Biochem Microbiol Technol Eng 1960; 2(3):299-311.
Sagan C. Carl Sagan's cosmic connection: an extraterrestrial perspective. Cambridge University Press; 1973.
Morrison N. Algae Farming in Low Earth Orbit: Past Present and Future. J Br Interplanet Soc 2014; 67:332-337.
Hall R, Shayler DJ. The Rocket Men: Vostok & Voskhod. The First Soviet Manned Spaceflights. Springer Science & Business Media; 2001.
Семененко ВЕ, Владимирова МГ. ВлиÑние уÑловий коÑмичеÑкого полета на корабле-Ñпутнике на Ñохранение жизнеÑпоÑобноÑти культуры хлореллы. Ð¤Ð¸Ð·Ð¸Ð¾Ð»Ð¾Ð³Ð¸Ñ Ñ€Ð°Ñтений 1961; 8:743-749.
Antipov VV, Delone NL, Nikitin MD, Parfyonov GP, Saxonov PP. Some results of radiobiological studies performed on Cosmos-110 biosatellite. Life Sci Space Res 1968; 7:207-208.
Ваулина ÐÐ, Ðникеева ИД, Губарева ÐÐ, Штраух ГÐ. ВлиÑние факторов коÑмичеÑкого полета на автоматичеÑких ÑтанциÑÑ… «Зонд» на выживаемоÑÑ‚ÑŒ и мутабильноÑÑ‚ÑŒ клеток хлореллы. КоÑмич иÑÑлед 1971; 9(6):940-944.
Сычев Ð’Ð. ИÑÑледование влиÑÐ½Ð¸Ñ Ð½ÐµÐ²ÐµÑомоÑти на биологичеÑкие объекты - Ð·Ð²ÐµÐ½ÑŒÑ Ð·Ð°Ð¼ÐºÐ½ÑƒÑ‚Ñ‹Ñ… ÑкологичеÑких ÑиÑтем жизнеобеÑÐ¿ÐµÑ‡ÐµÐ½Ð¸Ñ Ð¸ Ñоздание технологий их культивированиÑ. МоÑква, ИМБП, Ð’ÐК 14.00.32; 2000.
Sancho LG, De la Torre R, Horneck G, Ascaso C, de los Rios A, Pintado A et al. Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 2007; 7(3):443-454.
De Vera JP. Lichens as survivors in space and on Mars. Fungal Ecol 2012; 5(4):472-479.
Cockell CS, Rettberg P, Rabbow E, Olsson-Francis K. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. ISME J 2011; 5(10):1671-1682.
Eckart P. Spaceflight life support and biospherics (Vol. 5). Springer Science & Business Media; 2013.
Belz S, Ganzer B, Messerschmid E, Friedrich KA, Schmid-Staiger U. Hybrid life support systems with integrated fuel cells and photobioreactors for a lunar base. Aerosp Sci Technol 2013; 24(1): 169-176.
Pilo Teniente S. Simulation of the gas phase integration between compartments CIVa and CV of the MELiSSA Pilot Plant. Master Thesis, Universitat Politècnica de CatalunyaMaster in Aerospace Science & Technology; 2015.
ESA. Closed Loop Compartments. http://www.esa.int/Our_Activities/Space_Engineering_Technology/Melissa/Closed_Loop_Compartments ; 2015.
ESA. An ecosystem in a box. http://www.esa.int/Our_Activities/Human_Spaceflight/Research/An_ecosystem_in_a_box ; 2015.
Ganzer B, Messerschmid E. 2009. Integration of an algal photobioreactor into an environmental control and life support system of a space station. Acta Astronaut 2009; 65(1):248-261.
Li M, Hu D, Liu H, Hu E, Xie B, Tong L. Chlorella vulgaris culture as a regulator of CO 2 in a bioregenerative life support system. Adv Space Res 2013; 52(4): 773-779.
Beech M. Terraforming: the creating of habitable worlds. Springer Science & Business Media; 2009.
Gómez F, Mateo-Martà E, Prieto-Ballesteros O, MartÃn-Gago J, Amils R. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions. Icarus 2010; 209(2):482-487.
Horneck G. Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: a review. Planet Space Sci 1995;43(1):189-217.
Horneck G. The microbial world and the case for Mars. Planet Space Sci 2000; 48(11):1053-1063.
Sinha RP, Häder DP. UV-protectants in cyanobacteria. Plant Science 2008; 174(3):278-289.
Fogg MJ. Terraforming Mars: a review of current research. Adv Space Res 1998; 22(3):415-420.
Friedmann EI, Ocampo-Friedmann R. A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv Space Res 1995; 15(3):243-246.
Billi D, Ghelardini P, Onofri S, Cockell CS, Rabbow E, Horneck G. Desert cyanobacteria under simulated space and Martian conditions. EPSC Abstracts 2008; 3:EPSC2008-A.
de Vera JP, Schulze-Makuch D, Khan A, Lorek A, Koncz A, Möhlmann D et al. Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci 2014; 98:182-190.
Kounaves SP, Hecht MH, Kapit J, Quinn RC, Catling DC, Clark BC et al. Soluble sulfate in the martian soil at the Phoenix landing site. Geophys Res Lett 2010; 37(9).
Hand E. ‘Fixed’nitrogen found in martian soil. Science 2015; 347(6229):1403-1403.
Glavin DP, Freissinet C, Miller KE, Eigenbrode JL, Brunner AE, Buch A et al. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J Geophys Res-Planet 2013; 118(10):1955-1973.
Schuttlefield JD, Sambur JB, Gelwicks M, Eggleston CM, Parkinson BA. Photooxidation of chloride by oxide minerals: Implications for perchlorate on Mars. J Am Chem Soc 2011; 133(44):17521-17523.
Van Aken B, Schnoor JL. Evidence of perchlorate (ClO4-) reduction in plant tissues (poplar tree) using radio-labeled 36ClO4. Environ Sci Technol 2002; 36(12):2783-2788.
Yu L, Canas JE, Cobb GP, Jackson WA, Anderson TA. Uptake of perchlorate in terrestrial plants. Ecotoxicol Environ Saf 2004; 58(1):44-49.