3D ORGAN PRINTING: A FUTURE PROSPECT OF MEDICAL SCIENCES IN ORGAN TRANSPLANTATION

Authors

  • Ashutosh Tripathi Gujarat Technological University
  • Kasturi Malakar
  • Arihant Kumar Singh
  • Indrajeet Chaudhary

Abstract

Tissue engineering technology promising tool to solve the organ transplantation crisis. The organ bio-printing (or 3D organ printing) is the next generation alternative for organ transplantation. The structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. According to Steinberg differential adhesion hypothesis (DAH) the self-assembly of living cells into tissues of a specific cell type possesses a specific adhesion apparatus that combined with cell motility leads to cell assemblies of various cell types in the lowest adhesive energy state. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distribute branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters.

Author Biography

Ashutosh Tripathi, Gujarat Technological University

Pharmaceutics

References

Comper, W. D. 1996. Extracellular Matrix. (Two volumes). Harwood Academic Publishers, Amsterdam.

Veis, A. 1996. Dentin. In Extracellular Matrix. W. D. Comper, editor.Harwood Academic Publishers, Amsterdam. 41–76.

Veis, A., and A. George. 1994. Fundamentals of interstitial collagen self-assembly. In Extracellular Matrix Assembly and Function. P. D. Yurchenco, D. E. Birk, and R. P. Mecham, editors. Academic Press, San Diego. 15–45

Parkinson, J., K. E. Kadler, and A. Brass. 1995. Simple physical model of collagen fibrillogenesis based on diffusion limited aggregation. J. Mol. Biol. 247:823–831

Bouligand, Y. 1972. Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell. 4:189–217.

Ham, A. W., and D. H. Cormack. 1987. Ham’s Histology. Lippincott, Philadelphia.

Hay, E. D. 1991. Cell Biology of Extracellular Matrix. Plenum Press, New York.

Giraud-Guille, M. M. 1996. Twisted liquid crystalline supramolecular arrangements in morphogenesis. Int. Rev. Cytol. 166:59–101.

Cleary, E. G. 1996. Skin. In Extracellular Matrix. W. D. Comper, editor. Harwood Academic Publishers, Amsterdam. 77–109.

Karoly Jakab, Adrian Neagu, Vladimir Mironov and Gabor Forgacs, I , Biorheology 00 (2004) 1–5, IOS Press.

Whitesides, G. M. & Grzyboski, B. (2002) Science 295, 2418–2421.

Karoly Jakab, Adrian Neagu, Vladimir Mironov, Roger R. Markwald, and Gabor Forgacs , Engineering biological structures of prescribed shape using self-assembling multicellular systems

Langer, R. & Vacanti, J. P. (1993) Science 260, 920–926.

Bonassar, L. J. & Vacanti, C. A. (1998) J. Cell Biochem. Suppl. 30–31, 297–303.

Lysaght, M. J., Nguy, N. A. & Sullivan, K. (1998) Tissue Eng. 4, 231–238.

Marler, J., Upton, J., Langer, R. & Vacanti, J. (1998) Adv. Drug Del. Rev. 33, 165 182.

Griffith, L. G. & Naughton, G. (2002) Science 295, 1009–1014.

Wang, Y., Ameer, G. A., Sheppard, B. J. & Langer, R. (2002) Nat. Biotechnol.20, 602–606.

Martin, I., Dozin, B., Quarto, R., Cancedda, R. & Beltrame, F. (1997) Cytometry 28, 2141–2146.

Layer, P. G., Robitzki, A., Rothermel, A. & Willbold, E. (2002) Trends Neurosci. 3, 131–134.

Steinberg, M. S. (1996) Dev. Biol. 187, 377–388.

Ryan, P. L., Foty, R. A., Kohn, J. & Steinberg, M. S. (2001) Proc. Natl. Acad. Sci. USA 98, 4323–4327.

Foty, R. A., Pfleger, C. M., Forgacs, G. & Steinberg, M. S. (1996) Development (Cambridge, U.K.) 122, 1611–1620.

Liu, V. A. & Bhatia, S. N. (2002) Biomed. Microdev. 4, 257–266.

Kachurin, A. M., Stewart, R. L., Church, K. H., Warren, W. L., Fisher, J. P., Mikos, A. G., Kraeft, S. K. & Chen, L. B. (2001) Proc. Mat. Res. Soc. 689, 651–656.

Wilson, W. C. & Boland, T. (2003) Anat Rec. 272A, 491–496.

Boland, T., Mironov, V., Gutowska, A., Roth, E. A. & Markwald, R. R. (2003) Anat Rec. 272A, 497–502.

Mironov, V., Boland, T., Trusk, T., Forgacs, G. & Markwald, R. R. (2003) Trends Biotechnol. 21, 157–161.

Steinberg, M. S. (1963) Science 137, 762–763.

Steinberg, M. S. and Poole, T. J. (1982) in Cell Behaviour, eds. Bellains, R., Curtis, A. S. G. & Dunn, G. (Cambridge Univ. Press, Cambridge, U.K.), pp. 583–607.

M.S. Steinberg, Mechanism of tissue reconstruction by dissociated cells. II. Time course of events, Science 137 (1962), 762–763.

R.A. Foty, C.M. Pfleger, G. Forgacs and M.S. Steinberg, Surface tensions of embryonic tissues predict their mutual developmentbehavior, Development 122 (1996), 1611–1620.

J.A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E 47 (1993), 2128–2154.

D. Godt and U. Tepass, Drosophila oocyte localization is mediated by differential cadherin-based adhesion, Nature 395 (1998), 387–391.

A. González-Reyes and D. St Johnston, Patterning of the follicle cell epithelium along the anterior–posterior axis during Drosophila oogenesis, Development 125 (1998), 2837–2846.

Yang, S. et al. (2002) .The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8, 1–11.

Zein, I. et al. (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185.

Landers, R. et al. (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23, 4437–4447.

Sodian, R. et al. (2002) Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J. 48, 12–16.

Sun, W. and Lal, P. (2002) Recent development on computer aided tissue engineering–a review. Comput. Methods Programs Biomed. 67, 85–103.

Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR: Organ printing: tissue spheroids as building blocks. Biomaterials 2009, 30:2164-2174.

Lin RZ, Chang HY: Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 2008, 3:1172-1184.

Kelm JM, Djonov V, Hoerstrup SP, Guenter CI, Ittner LM, Greve F, Hierlemann A, Sanchez-Bustamante CD, Perriard JC, Ehler E et al.: Tissue-transplant fusion and vascularization of myocardial microtissues and macrotissues implanted into chicken embryos and rats. Tissue Eng 2006, 12:2541-2553.

Kelm JM, Djonov V, Ittner LM, Fluri D, Born W, Hoerstrup SP, Fussenegger M: Design of custom-shaped vascularised tissues using microtissue spheroids as minimal building units. Tissue Eng 2006, 12:2151-2160.

Kelm JM, Fussenegger M: Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol 2004, 22:195-202.

Kelm JM, Lorber V, Snedeker JG, Schmidt D, Broggini-Tenzer A, Weisstanner M, Odermatt B, Mol A, Zund G, Hoerstrup SP: A novel concept for scaffold-free vessel tissue engineering: self assembly of microtissue building blocks. J Biotechnol 2010, 148:46-55.

Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK: Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 2003, 83:173-180.

Layer PG, Robitzki A, Rothermel A, Willbold E: Of layers and spheres: the reaggregate approach in tissue engineering. Trends Neurosci 2002, 25:131-134.

Mironov V, Markwald RR, Forgacs G: Organ printing: self-assembling cell aggregates as a ‘‘bioink’’. Sci Med 2003, 9:69-71.

Reininger-Mack A, Thielecke H, and Robitzki AA: 3D-biohybrid systems: applications in drug screening. Trends Biotechnol 2002, 20:56-61.

Dean DM, Morgan JR: Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues. Tissue Eng Part A 2008, 14:1989-1997.

Dean DM, Napolitano AP, Youssef J, Morgan JR: Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J 2007, 21:4005-4012.

Napolitano AP, Chai P, Dean DM, Morgan JR: Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng 2007, 13:2087-2094.

Napolitano AP, Dean DM, Man AJ, Youssef J, Ho DN, Rago AP, Lech MP, Morgan JR: Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques 2007, 43: 494, 496–500.

Rago AP, Dean DM, Morgan JR: Controlling cell position in complex heterotypic 3D microtissues by tissue fusion. Biotechnol Bioeng 2009, 102:1231-1241.

Nagy-Mehesz A, Brown J, Beaver W, Gayk M, Hajdu Z, Visconti R, Norris RA, Trusk T, Markwald R, Mironov V: Scalable robotic biofabrication of uniform size tissue spheroids. In 2010 International Conference on Biofabrication. Edited by Sun W. Philadelphia, Pennsylvania, USA: 2010:71.

Fukuda J, Khademhosseini A, Yeo Y, Yang X, Yeh J, Eng G, Blumling J, Wang CF, Kohane DS, Langer R: Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 2006, 27:5259-5267.

Fukuda J, Nakazawa K: Orderly arrangement of hepatocytes spheroids on a microfabricated chip. Tissue Eng 2005, 11:1254-1262.

Nakazawa K, Izumi Y, Fukuda J, Yasuda T: Hepatocyte spheroid culture on a polydimethylsiloxane chip having microcavities. J Biomater Sci Polym Ed 2006, 17:859-873.

Okuyama T, Yamazoe H, Mochizuki N, Khademhosseini A, Suzuki H, Fukuda J: Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device. J Biosci Bioeng 2010, 110:572-576.

Otsuka H, Hirano A, Nagasaki Y, Okano T, Horiike Y, Kataoka K: Two-dimensional multiarray formation of hepatocytes spheroids on a microfabricated PEG-brush surface. Chembiochem 2004, 5:850-855.

Tekin H, Anaya M, Brigham MD, Nauman C, Langer R, Khademhosseini A: Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip 2010, 10:2411-2418.

Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu LY, Kim JW, Fernandez-Nieves A, Martinez CJ et al.: Designer emulsions using microfluidics. Mater Today 2008, 11:18-27.

Mironov V, Kasyanov V, Drake C, Markwald RR: Organ printing: promises and challenges. Regen Med 2008, 3:93-103.

Karch, R. et al. (1999) A three-dimensional model for arterial tree representation, generated by constrained constructive optimization. Comput. Biol. Med. 29, 19–38

Sun, W. and Lal, P. (2002) Recent development on computer aided tissue engineering – a review. Comput. Methods Programs Biomed. 67, 85–103.

Boland, T. and Wilson, C. Organ printing I. Anat. Rec. (in press)

Y.H. et al. (2001) Regaining chondrocyte phenotype in thermosensitive gel culture. Anat. Rec. 263, 336–341

Jeong, B. and Gutowska, A. (2002) Lessons from nature: stimuliresponsive polymers and their biomedical applications. Trends Biotechnol. 20, 305–311.

Boland, T. et al. Organ printing II. Anat. Rec. (in press)

Neagu, A. and Forgac, G. (2002) Fusion of cell aggregates: a mathematical model. In Biomedical Engineering. Recent Development (Vossoughi, J., ed.), pp. 241–242.

Lee Cronin: Print your own medicine: http://www.ted.com/talks/lee_cronin_print_your_own_medicine.html?utm_source=newsletter_daily&utm_campaign=daily&utm_medium=email&utm_content=button__2013-02-07.

3D bio-printers to print skin and body parts: http://phys.org/news/2011-02-3d-bio-printers-skin-body.html.

Bio-printing blog (possibilities of printing kidney, liver or heart): http://bioprinter.blogspot.com.

Lothar Koch, Stefanie Kuhn, Heiko Sorg, Martin Gruene, Sabrina Schlie, Ralf Gaebel, Bianca Polchow, Kerstin Reimers, Stephanie Stoelting, Nan Ma, Peter M. Vogt, Gustav Steinhoff, and Boris Chichkov. Tissue Engineering Part C: Methods. October 2010, 16(5): 847-854. doi:10.1089/ten.tec.2009.0397.

WSU researchers make bone-like material using 3D printer: http://www.3ders.org/articles/20111130-bone-like-material-using-3d-printer.html.

3D-printed implant replaces 75 percent of patient's skull: http://news.cnet.com/8301- 17938_105-57573305-1/3d-printed-implant-replaces-75-percent-of-patients-skull.

Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Ralf Gaebel, Nan Ma, Jun Liu, Jianjun Guan, Lothar Koch, Christian Klopsch, Martin Gruene, Anita Toelk, Weiwei Wang, Peter Mark, Feng Wang, Boris Chichkov, Wenzhong Li, Gustav Steinhoff Reference- and Translation Center for Cardiac Stem Cell Therapy, Department of Cardiac Surgery, University of Rostock, 18057 Rostock, Germany. Biomaterials. 2011 Dec; 32 (35):9218-30 21911255.

How to print out a blood vessel: http://www.nature.com/news/2008/080320/full/news.2008.675.html.

Scientists created artificial blood vessels on a 3D printer: http://www.3ders.org/Blog%20Posts/scientists-created-artificial-blood-vessels-on-a 3dprinter. html.

7 talks on the wonders of 3D printing: http://www.ted.com/talks/anthony_atala_printing_a_human_kidney.html.

Breakthrough: Scientists use 3D printer to produce stem cells:http://www.3ders.org/articles/20130205-scientists-use-3d-printer-to-produce-human-embryonicstem- cells.html.

Published

01-10-2013

How to Cite

Tripathi, A., Malakar, K., Kumar Singh, A., & Chaudhary, I. (2013). 3D ORGAN PRINTING: A FUTURE PROSPECT OF MEDICAL SCIENCES IN ORGAN TRANSPLANTATION. Innovare Journal of Life Sciences, 1(3), 10–17. Retrieved from https://mail.innovareacademics.in/journals/index.php/ijls/article/view/433

Issue

Section

Articles