VALIDATION AND TRANSFERABILITY OF SIMPLE SEQUENCE REPEATS (SSR'S) FROM SOME SPECIES OF ACACIA GENUS TO ACACIA NILOTICA L.

Authors

  • Amita Yadav Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
  • Manila Yadav Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
  • Sandeep Kumar Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
  • Dushyant Sharma Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
  • Jaya Parkash Yadav Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India

DOI:

https://doi.org/10.22159/ijpps.2016v8i11.13550

Keywords:

Acacia nilotica, SSR, Genetic diversity, Transferability, Geographical distance

Abstract

Objective: In present study genetic transferability of SSR's from related Acacia species to Acacia nilotica was evaluated along with its genetic diversity analysis from north Indian region.

Methods: A total of 30 primers selected from 5 different Acacia species were screened for amplification and polymorphism. Dendrogram and 2 D Plot were constructed using NTSys PC version 2.02e. Different diversity parameters like Polymorphism information content (PIC), alleles per primer, number (no.) of amplicons were also calculated for each primer pair.

Results: SSRs from Acacia tortilis, A. senegal and A. koa were highly transferable in A. nilotica. Out of 30, only twenty-two primers showed amplification with an average of 1.36 alleles per locus. Polymorphic information content (PIC) values ranged from 0.5 to 0.96 with an average of 0.81. Jaccard similarity coefficient (J) values ranged from 0.04 to 0.67 showing a high level of diversity. Un-weighted pair group method with arithmetic mean (UPGMA), based cluster analysis, divided all accessions into three main clusters.

Conclusion: Geographical and climatic conditions showed a great impact on genetic diversity. The results indicated high transferability of genomic resources from related species and will facilitate more studies to characterize the relatively less studied Acacia niloticagenome.

 

Downloads

Download data is not yet available.

References

Maslin BR. Classification and phylogeny of Acacia. In: Crespi BJ, Morris DC, Mound LA. editors. Evolution of ecological and behavioral diversity: Australian Acacia thrips as model organisms. Canberra: Australian Biological Resources Study and Australian National Insect Collection, CSIRO; 2004. p. 97-112.

Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. Indica in. J Appl Ecol 2003;40:111-24.

Orchard AE, Maslin BR. Proposal to conserve the name acacia (Leguminosae: Mimosoideae) with a conserved type. Taxon 2003;52:362–3.

Bargali K, Bargali SS. Acacia nilotica: a multipurpose leguminous plant. Nature Sci 2009;7:11-9.

Brenan JPM. Manual on the taxonomy of acacia species: a present taxonomy of four species of acacia (A. albida, A. senegal, A. nilotica, A. tortilis). Rome: FAO; 1983.

Ali A, Akhtar N, Khan BA, Khan MS, Rasul A, Zaman SU, et al. Acacia nilotica: a plant of multipurpose medicinal uses. J Med Plant Res 2012;6:1492-6.

Yadav A, Yadav M, Kumar S, Yadav JP. Bactericidal effect of Acacia nilotica: in vitro antibacterial and time-kill kinetic studies. Int J Curr Res 2015;7:22289-94.

Sultana B, Anwar F, Przybylski R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica and Eugenia jambolana Lam. trees. Food Chem 2007;104:1106-14.

Meena PD, Kaushik P, Shukla S, Soni AK, Kumar M, Kumar A. Anticancer and antimutagenic properties of Acacia nilotica (Linn.) on 7, 12-dimethylbenz (a) anthracene induced skin papilloma genesis in swiss albino mice. Asian Pacific J Cancer Prevention 2006;7:627-32.

Misar A, Bhagat R, Mujumdar AM. Antidiarrhoeal activity of Acacia nilotica Willd. bark methanol extract. Hind Antibiot Bull 2006;49:14-20.

Chatterjee P, Das N. Evaluation of the antimicrobial potentiality of 50 percent aqueous ethanolic leaf extract of Acacia nilotica willd. Asian J Pharm Clin Res 2014;7:95-8.

Kalaivani T, Rajasekaran C, Mathew L. Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) Wild. Ex. Delile Subsp. indica (Benth.) Brenan. J Food Sci 2011;76:144–9.

Singh BN, Singh BR, Singh RL, Prakash D, Sarma BK, Singh HB. Antioxidant and anti-quorum sensing activities of a green pod of Acacia nilotica L. Food Chem Toxicol 2009;47:778-86.

Singh R, Singh B, Singh S, Kumar N, Kumar S, Arora S. Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicol In Vitro 2008;22:1965-70.

Sheikh MI. Afforestation in waterlogged and saline areas. Pak J For 1974;24:186-92.

Marcar NE, Khanna PK. Reforestation of salt-affected and acid soils. Aciar Monogr Ser 1997;43:481-526.

Viswanath S, Nair PKR, Kaushik PK, Prakasam U. Acacia nilotica trees in rice fields: a traditional agroforestry system in central India. Agroforestry Systems 2000;50:157-77.

Singhal VK, Kaur A, Saggoo MIS. Reproductive biology and germplasm evaluation of Acacia nilotica (Linn.) Willd. ex Del. from North India. Muelleria 2008;26:86-94.

Dwivedi AP. Babul (Acacia nilotica): a multipurpose tree of dry areas. Jodhpur: Scientific Publishers; 1993.

Patil KN, Ramana PV, Singh RN. Performance evaluation of natural draft based agricultural residues charcoal system. Biomass Bioenergy 2000;18:161–73.

Arana MV, Gallo LA, Vendramin GG, Pastorino MJ, Sebastiani F, Marchelli P. High genetic variation in marginal fragmented populations at extreme climatic conditions of the patagonian cypress Austrocedrus chilensis. Mol Phylogenet Evol 2010;54:941-9.

Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015. http://dx.doi.org/10.1155/2015/431487

Jarne P, Lagoda PJ. Microsatellites from molecules to populations and back. Trends Ecol Evol 1996;1:424-9.

White G, Powell W. Crossâ€species amplification of SSR loci in the meliaceae family. Mol Ecol 1997;6:1195-7.

This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, et al. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 2004;109:1448–58.

Yildiz M, Cuevas HE, Sensoy S, Erdinc C, Baloch FS. Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources. Biochem Syst Ecol 2015;59:45-53.

Ngailo S, Shimelis H, Sibiya J, Amelework B, Mtunda K. Genetic diversity assessment of Tanzanian sweet potato genotypes using simple sequence repeat markers. S Afr J Bot 2016;102:40-5.

Varghese M, Edwards MA, Hamrick JL. Genetic variation within two subspecies of Acacia nilotica. For Genet 1999;6:221-8.

Ndoye-Ndir K, Samb PI, Chevallier MH. Genetic variability analysis of the polyploid complex of Acacia nilotica (L.) Willd. Using RAPD markers. Tropicultura 2008;26:135-40.

Wardill TJ, Scott KD, Graham GC, Zalucki MP. Isolation and characterization of microsatellite loci from Acacia nilotica ssp. indica (Mimosaceae). Mol Ecol Notes 2004;4:361-3.

Butcher PA, Decroocq S, Gray Y, Moran GF. Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. Theor Appl Genet 2000;101:1282-90.

Fredua-Agyema R, Adamski D, Liao RJ, Morden C, Borthakur D. Development and characterization of microsatellite markers for analysis of population differentiation in the tree legume Acacia koa (Fabaceae: Mimosoideae) in the Hawaiian Islands. Genome 2008;51:1001-15.

Assoumane A, Vaillant A, Mayak AZ, Verhaegen D. Isolation and characterization of microsatellite markers for Acacia senegal (L.)Willd., a multipurpose arid and semi-arid tree. Mol Ecol Resour 2009;9:1380-3.

Omondi SF, Kireger E, Dangasuk OG, Chikamai B, Odee DW, Cavers S, et al. Genetic diversity and population structure of Acacia senegal (L) Willd. in Kenya. Trop Plant Biol 2010;3:59-70.

Winters G, Shklar G, Korol L. Characterizations of microsatellite DNA markers for Acacia tortilis. Conserv Plant Genet Resour In Vitro 2013;5:807-9.

Rohlf FJ. NTSYS-pc numerical taxonomy and multivariate analysis system. Version 2.02e. EXETER Software: Setauket; 1998.

Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, et al. An evaluation of the utility of SSR loci as molecular marker in maize (Zea mays L.): comparison with data from RFLPS and pedigree. Theor Appl Genet 1997;95:163-73.

Tomar OS, Gupta RK. Performance of some forest tree species in saline soils under shallow and saline water-table conditions. Plant Soil 1985;87:329-35.

Kulhari A, Sheorayan A, Bajar S, Sarkar S, Chaudhury A, Kalia RK. Investigation of heavy metals in frequently utilized medicinal plants collected from environmentally diverse locations of north western India. Springer Plus 2013;2:676.

Khurana EKTA, Singh JS. Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environ Conser 2001;28:39-52.

Nanda RM, Nayak S, Rout GR. Studies on genetic relatedness of Acacia tree species using RAPD markers. Biologia 2004;59:115-20.

Singh K, Kadyan S, Panghal M, Yadav JP. Assessment of genetic diversity in Tinospora cordifolia by inters simple sequence repeats (ISSR) and expressed sequence tagged-simple sequence repeats (EST-SSR). Int J Pharm Pharm Sci 2014;6:520-4.

Kumar S, Yadav M, Yadav A, Yadav JP. Molecular assessment of genetic diversity in Indian accessions of Aloe vera using SSR marker. Int J Pharm Pharm Sci 2015;7:149-54.

Zhang Z, Gao J, Kong D, Wang A, Tang S, Li Y, et al. Assessing genetic diversity in Ziziphus jujuba ‘Jinsixiaozao’using morphological and microsatellite (SSR) markers. Biochem Syst Ecol 2015;61:196-202.

Khadivi-Khub A, Yarahmadi M, Jannatizadeh A, Ebrahimi A. Genetic relationships and diversity of common apricot (Prunus armeniaca L.) based on simple sequence repeat (SSR) markers. Biochem Syst Ecol 2015;61:366-71.

Abraha MT, Shimelis H, Laing M, Assefa K, Amelework B. Assessment of the genetic relationship of tef (Eragrostis tef) genotypes using SSR markers. S Afr J Bot 2016;105:106-10.

Shitta NS, Abberton MT, Adesoye AI, Adewale DB, Oyatomi O. Analysis of genetic diversity of African yam bean using SSR markers derived from cowpea. Plant Genet Res 2016;14:50-6.

Satya P, Paswan PK, Ghosh S, Majumdar S, Ali N. Confamiliar transferability of simple sequence repeat (SSR) markers from cotton (Gossypium hirsutum L.) and jute (Corchorus olitorius L.) to twenty two Malvaceous species. 3 Biotechnology 2016;6:1-7.

Maslin BR, Miller JT, Seigler DS. Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust Syst Bot 2003;16:1-18.

El Ayadi F, Aabd NA, El Finti A, Msanda F, Baniaameur F, El Mousadik A. Genetic variability of wild provenances of Acacia tortilis ssp. raddiana (Savi) brenan in South of morocco. Asian J Plant Sci 2011;10:119-34.

Whitesell CD. Acacia koa Gray. In: Burns RM, Honkala BH. editors. Silvics of North America; 2, Hardwoods. Agricultural Handbook No. 654. Washington DC. USDA Forest Service; 1990.

Midgley SJ, Turnbull JW, Pinyopusarerk K. Industrial Acacias in Asia: Small brother or big competitor? In: Wei P, Xu D. editors. Eucalyptus Plantations: Research, Management and Development. Proccedings of the International Symposium, Guangzhou, China: World Scientific; 2003. p. 19-20.

Josiah CC, George DO, Eleazar OM, Nyamu WF. Genetic diversity in Kenyan populations of Acacia senegal (L.) willd revealed by combined RAPD and ISSR markers. Afr J Biotech 2008;7:2333-40.

Cloutier S, Miranda E, Ward K, Radovanovic N, Reimer E, Walichnowski A, et al. Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor Appl Genet 2012;125:685-94.

Ge XJ, Yu Y, Yuan YM, Huang HW, Yan C. Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis. Ann Bot 2005;95:843-51.

Published

01-11-2016

How to Cite

Yadav, A., M. Yadav, S. Kumar, D. Sharma, and J. P. Yadav. “VALIDATION AND TRANSFERABILITY OF SIMPLE SEQUENCE REPEATS (SSR’S) FROM SOME SPECIES OF ACACIA GENUS TO ACACIA NILOTICA L”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 11, Nov. 2016, pp. 95-101, doi:10.22159/ijpps.2016v8i11.13550.

Issue

Section

Original Article(s)