THERMAL DEGRADATION KINETICS OF KAEMPFEROL AND QUERCETIN IN THE PRE-FORMULATED OF THE STANDARDIZED EXTRACTS OF POINCIANELLA PYRAMIDALIS (TUL.) L. P. QUEIROZ OBTAINED BY SPRAY DRYER

Authors

  • AGNA HELIA DE OLIVEIRA Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
  • Renata Da Silva Leite Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
  • FabrÍcio Havy Dantas Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
  • Valmir Gomes De Souza Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
  • JOSÉ VENÂNCIO CHAVES JÚNIOR Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
  • FÁbio Santos De Souza Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
  • Rui Oliveira Macedo Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil

DOI:

https://doi.org/10.22159/ijpps.2017v9i6.16935

Keywords:

Poincianella pyramidalis, Spray dryer, Excipients, Stabilit

Abstract

Objective: The aim of this work was to evaluate the stability and determine the kinetic parameters of degradation of biomarkers kaempferol and quercetin, present in the pre-formulated of the extract of Poincianella pyramidalis obtained by a spray dryer.

Methods: A 23experimental design coupled with RSM was applied to evaluate and optimize the effects of processing parameters on the content of chemical markers in dry extracts by a spray dryer. Stability testing was performed to verify the influence of temperature on the degradation of kaempferol and quercetin present in the pre-formulated. The markers contents were determined by HPLC.

Results: Surface response analysis showed the influence of the independent variables on the responses of the concentration kaempferol and quercentin biomarkers on the process. The variables of the inlet air temperature, flow feed rate and the adjuvant ratio presented negative responses with significant difference (p<0.05). According to the data obtained in the stability of the pre-formulated studied zero and second orders kinetics models the for degradation of the kaempferol and only second order kinetic model for the quercetin. It was also evaluated reducing the concentration of both biomarkers studied throughout the study.

Conclusion: In the present study, it was observed that all independent variables of the drying process by spray dryer showed the greatest influence on the concentration of the studied markers. Two markers had a different thermal behavior compared to the different excipients studied and there was degradation of both the quercentin biomarker and kaempferol during the study period.

Downloads

Download data is not yet available.

References

Queiroz LP. Leguminosas da Caatinga. 1st Ed. Feira de Santana (BA): Editora Universitária da UEFS; 2009.

Albuquerque UP, Medeiros PM, Almeida ALS, Monteiro JM, Lins Neto EMF, Melo JG, et al. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. J Ethnopharmacol 2007;114 Suppl 3:325-54.

Cartaxo SL, Souza MMA, Albuquerque UP. Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. J Ethnopharmacol 2010;131 Suppl 2:326-42.

Souza MZS, Andrade LRS, Fernandes MSM. Levantamento sobre plants medicinais comercializadas na feira livre da cidade de Esperança–PB. Biofar 2011;5 Suppl 1:111-8.

Bahia MV, David JP, David JM. The occurrence of by flavones in leaves of Caesalpinia pyramidalis specimens. Quim Nova 2010;33 Suppl 6:1297-300.

Bahia MV, Santos JB, David JP, David JM. Biflavonoids and other phenolics of Caesalpinia pyramidalis (Fabaceae). J Braz Chem Soc 2005;16 Suppl 6b:1402-5.

Melo JG, Araújo TAS, Castro VTNA, Cabral DLV, Rodrigues MD, Nascimento SC, et al. Antiproliferative activity, antioxidant capacity and tannin content in plants of semi-arid Northeastern Brazil. Molecules 2010;15 Suppl 12:8534-42.

Mendes CC, Bahia MV, David JM, David JP. Constituents of Caesalpinia pyramidalis. Fitoterapia 2000;71 Suppl 2:205-7.

Monteiro JM, Lins Neto EMF, Amorim ELC, Strattmann RR, Araújo EL, Albuquerque UP. Teor de taninos em três espécies medicinais arbóreas simpátricas da caatinga. Rev Arvore 2005;29 Suppl 6:999-1005.

Oliveira JCS. Estudo químico e avaliação biológica do extrato das cascas das raízes de Caesalpinia pyramidalis Tul. (Leguminosae). Dissertação de Mestrado. Universidade Federal da Bahia, Salvador; 2010.

Ribeiro AR, Diniz PF, Estevam CS, Pinheiro M, Albuquerque-Jr RLC, Thomazzi S. Gastroprotective activity of the ethanol extract from the inner bark of Caesalpinia pyramidalis in rats. J Ethnopharmacol 2013;147 Suppl 2:383-8.

Giulietti AM, Soares MBP, Santos RR. Atividade antibacteriana em alguns extratos de vegetais do semiárido brasileiro. Rev Bras Farmacogn 2003;13 Suppl 2:4-7.

Pereira Jr LR, Andrade AP, Araújo KD, Barbosa AS, Barbosa FM. Espécies da caatinga como alternativa para o desenvolvimento de novos fitofármacos. Floresta Ambient 2014;21 Suppl 4:509-20.

Santana DG, Santos CA, Santos ADS, Nogueira PCL, Thomazzi SM, Estevam CS, et al. Beneficial effects of the ethanol extract of Caesalpinia pyramidalis on the inflammatory response and abdominal hyperalgesia in rats with acute pancreatitis. J Ethnopharmacol 2012;142 Suppl 2:445-55.

Santos AC, Ailane MPR, Passos FCA, Camargo EA, Estevam CS, Santos MRV, et al. Antinociceptive and anti-inflammatory effects of Caesalpinia pyramidalis in rodents. Braz J Pharmacogn 2011;21:1077-83.

Santos CA. Estudo farmacológico do extra to etanólico da entrecasca da Caesalpinia pyramidalis Tul. (Leguminosae). Dissertação de Mestrado-Universidade Federal da Paraíba, Aracajú; 2010.

Souza CR, Shave to IA, Thomazini FCF, Oliveira WP. Processing of Rosmarinus officinalis Linne extracts on spray and spouted bed dryers. Braz J Chem Eng 2008;25:59-69.

Oliveira WP, Bott RF, Souza CRF. Manufacturer of standardized dried extracts from medicinal Brazilian plants. Drying Technol 2006;24:523–33.

Bott RF, Labuza TP, Oliveira WP. Stability testing of spray and spouted bed–dried extracts of Passiflora alata. Drying Technol 2010;28:1255–65.

Thirugnanasambandham K, Sivakumar V, Prakash JN. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology. J Environ Health Sci Eng 2014;12:29.

Sarala M, Velu V, Anandharamakrishnan C, Singh RP. Spray drying of Tinospora cordifolia leaf and stem extract and evaluation of antioxidant activity. J Food Sci Technol 2012;49:119-22.

Tonon RV, Brabet C, Hubinger MD. Influence of process conditions on the physic-chemical properties of acai powder produced by spray drying. J Food Eng 2008;88:411–8.

Muzaffar K, Kumar P. Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Tecnol 2015;279:179-84.

Patil V, Chauhan AK, Sing RP. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Tecnol 2014;253:230-36.

Pradeep BV, Akilandeswari P, Usha RV, Palaniswamy M. Application of multifactorial experimental design for optimization of prodigiosin production using Serratia marcescens MBB01, MBB02, AND MBB05. Asian J Pharm Clin Res 2016;9:408-16.

Veit, M. Note for guidance on stability testing of existing herbal drug preparations and related herbal medicinal products. Pharm Indian 2002;64:20–3.

Leite RS, Souza VG, Oliveira AH, Júnior JVC, Salvador IS, Andrade FHD, et al. Standardization and stability evaluation of dry extracts of Myracrodruon urundeuva Allemão obtained by spray drier. Int J Pharm Pharm Sci 2017;9:154-9.

ICH Q2B. Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation Research. Guidance for industry: ICH Q2B Validation of analytical procedures: methodology. Rockville; 1995.

Klu MW, Addy BS, Oppong EE, Sakyi ES, Mintah NM. Effect of storage conditions on the stability of ascorbic acid in some formulations. Int J Appl Pharm 2016;8:26-31.

Thirugnanasambandham K, Sivakumar V. Influence of process conditions on the physicochemical properties of pomegranate juice in spray drying process: Modelling and optimization. J Saudi Soc Agric Sci 2015.

Scibisz I, Kalisz S, Mitek M. Thermal degradation of anthocyanins in blueberry fruit. Zywn Nauk Technol Ja 2010;72:56-66.

Hiemori M, Koh E, Mitchell AE. Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR). J Agric Food Chem 2009;57:1908-14.

Bott RF, Labuza TP, Oliveira WP. Stability testing of spray and spouted bed–dried extracts of Passiflora alata. Drying Technol 2010;28:1255–65.

Published

01-06-2017

How to Cite

OLIVEIRA, A. H. D. ., R. D. S. Leite, F. H. Dantas, V. G. D. Souza, J. V. C. . JÚNIOR, F. S. D. Souza, and R. O. Macedo. “THERMAL DEGRADATION KINETICS OF KAEMPFEROL AND QUERCETIN IN THE PRE-FORMULATED OF THE STANDARDIZED EXTRACTS OF POINCIANELLA PYRAMIDALIS (TUL.) L. P. QUEIROZ OBTAINED BY SPRAY DRYER”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 9, no. 6, June 2017, pp. 123-8, doi:10.22159/ijpps.2017v9i6.16935.

Issue

Section

Original Article(s)

Most read articles by the same author(s)