A REVIEW ON APTAMERS IN GENE THERAPY AND THEIR APPLICATIONS

Authors

  • NIKHIL DIXIT Department of Pharmaceutics, H. K. College of Pharmacy, Oshiwara, Mumbai, India
  • GAURANG SAWANT Department of Pharmaceutics, H. K. College of Pharmacy, Oshiwara, Mumbai, India https://orcid.org/0000-0001-8984-2148
  • HAMID KHAN Department of Pharmaceutics, H. K. College of Pharmacy, Oshiwara, Mumbai, India

DOI:

https://doi.org/10.22159/ijpps.2020v12i12.39241

Keywords:

Gene therapy, Cure, Aptamers, Skeletal, Biosensors, Viruses, Drugs

Abstract

Gene therapy has been initiated as long back from 1990s but is still in development. Research has been continuously going on in this field in order to cure genetic diseases by various techniques. One of these is aptamers. Aptamers are single stranded DNA or RNA molecules made by SELEX technology and have the ability of attaching to a variety of targets namely proteins, peptides, carbohydrates, toxins etc. They find application in skeletal disorders, biosensors, detection of viruses, delivery of drugs, various drug delivery systems, etc.

Downloads

Download data is not yet available.

References

Hardee CL, Arevalo Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes 2017;8:65.

Zhou J, Bobbin M, Burnett JC, Rossi JJ. Current progress of RNA aptamer-based therapeutics. Front Genet 2012;3:234.

Han K, Liang Z, Zhou N. Design strategies for aptamer-based biosensors. Sensors 2010;10:4541-57.

Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V. Aptamers against pathogenic microorganisms. Crit Rev Microbiol 2016;42:847-65.

Torres Chavolla E, Alocilja EC. Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron 2009;24:3175-82.

Tom Brown, Dr Tom Brown. Nucleic Acids Book, free online book on the chemistry and biology of nucleic acids. Available from: https://www.atdbio.com/content/61/Nucleic-acid-aptamers [Last accessed on 20 May 2020].

Rozenblum GT, Lopez VG, Vitullo AD, Radrizzani M. Aptamers: current challenges and future prospects. Expert Opin Drug Discovery 2016;11:127-35.

Shu Y, Cinier M, Shu D, Guo P. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods 2011;54:204-14.

Zhou J, Shu Y, Guo P, Smith DD, Rossi JJ. Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods 2011;54:284-94.

Seok Kim Y, Ahmad Raston NH, Bock Gu M. Aptamer-based nanobiosensors. Biosens Bioelectron 2016;76:2-19.

Wang R, Li Y. Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron 2013;42:148-55.

Park JH, Jee MH, Kwon OS, Keum SJ, Jang SK. Infectivity of hepatitis C virus correlates with the amount of envelope protein E2: development of a new aptamer-based assay system suitable for measuring the infectious titer of HCV. Virology 2013;439:13-22.

Labib M, Zamay AS, Muharemagic D, Chechik AV, Bell JC. Aptamer-based viability impedimetric sensor for viruses. Anal Chem 2012;84:1813-6.

Parekh P, Tang Z, Turner PC, Moyer RW, Tan W. Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal Chem 2010;82:8642-9.

Toscano Garibay JD, Benítez Hess ML, Alvarez Salas LM. Isolation and characterization of an RNA aptamer for the HPV-16 E7 oncoprotein. Arch Med Res 2011;42:88-96.

Graham JC, Zarbl H. Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells. PLoS One 2012;7:e36103.

Bruno JG, Carrillo MP, Richarte AM, Phillips T, Andrews C. Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses. BMC Res Notes 2012;5:e633.

Wandtke T, Wozniak J, Kopinski P. Aptamers in diagnostics and treatment of viral infections. Viruses 2015;7:751-80.

Lopes de Campos WR, Chirwa N, London G, Rotherham LS, Morris L. HIV-1 subtype C unproductively infects human cardiomyocytes in vitro and induces apoptosis mitigated by an anti-Gp120 aptamer. PLoS One 2014;9:e110930.

Bai H, Wang R, Hargis B, Lu H, Li Y. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 2012;12:12506-18.

Nguyen VT, Seo HB, Kim BC, Kim SK, Song CS. Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosens Bioelectron 2016;86:293-300.

Niedzwiecki DJ, Iyer R, Borer PN, Movileanu L. Sampling a biomarker of the human immunodeficiency virus across a synthetic nanopore. Acs Nano 2013;7:3341-50.

Fletcher SJ, Phillips LW, Milligan AS, Rodda SJ. Toward specific detection of dengue virus serotypes using a novel modular biosensor. Biosens Bioelectron 2010;26:1696-700.

Ruslinda AR, Tanabe K, Ibori S, Wang X, Kawarada H. Effects of diamond-FET-based RNA aptamer sensing for detection of the real sample of HIV-1 tat protein. Biosens Bioelectron 2013;40:277-82.

Ocadiz Delgado R, Albino Sanchez ME, Garcia Villa E, Aguilar Gonzalez MG, Cabello C. In situ molecular identification of the Influenza a (H1N1) 2009 neuraminidase in patients with severe and fatal infections during a pandemic in Mexico City. BMC Infect Dis 2013;13:20.

Caliendo AM. Multiplex PCR and emerging technologies for the detection of respiratory pathogens. Clin Infect Dis 2011;52:26-30.

Dhumpa R, Handberg KJ, Jorgensen PH, Yi S, Wolff A. Rapid detection of avian influenza virus in chicken fecal samples by immunomagnetic capture reverse transcriptase-polymerase chain reaction assay. Diagn Microbiol Infect Dis 2011;69:258-65.

Sidoti F, Rizzo F, Costa C, Astegiano S, Curtoni A. Development of real-time RT-PCR assays for detection of type an influenza virus and for subtyping of avian H5 and H7 hemagglutinin subtypes. Mol Biotechnol 2010;44:41.

Yang J, Kim JH, Kim Y. Comparison of nine different qualitative HBsAg assay kits. Korean J Lab Med 2010;30:178-84.

Kim H, Shin S, Oh EJ, Kahng J, Kim Y. Comparison of the advan sure HBV real-time PCR test with three other HBV DNA quantification assays. Clin Lab Sci 2013;43:230-7.

Mühlbacher A, Schennach H, Van Helden J, Hebell T, Pantaleo G. Performance evaluation of a new fourth-generation HIV combination antigen-antibody assay. Immunol Med Microbiol 2013;202:77-86.

Saune K, Delaugerre C, Raymond S, Nicot F, Boineau J. Analytical sensitivity of three real-time PCR assays for measuring subtype B HIV-1 RNA. J Clin Virol 2013;57:80-3.

Lee KY, Kang H, Ryu SH, Lee DS, Lee JH. Bioimaging of nucleolin aptamer-containing 5-(N-benzylcarboxyamide)-2′-deoxyuridine more capable of specific binding to targets in cancer cells. J Biomed Biotechnol 2010;2010:505-10.

Min K, Song KM, Cho M, Chun YS, Shim YB. Simultaneous electrochemical detection of both PSMA (+) and PSMA (−) prostate cancer cells using an RNA/peptide dual-aptamer probe. Chem Comm 2010;46:5566-8.

Pascual L, Cerqueira Coutinho C, Garcia Fernandez A, de Luis B, Bernardes ES. MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomed Nanotechnol 2017;13:2495-505.

Mosafer J, Abnous K, Tafaghodi M, Mokhtarzadeh A, Ramezani M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur J Pharm Biopharm 2017;113:60-74.

Mosafer J, Teymouri M, Abnous K, Tafaghodi M, Ramezani M. Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. Mater Sci Eng 2017;72:123-33.

Savla R, Taratula O, Garbuzenko O, Minko T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Controlled Release 2011;153:16-22.

Chen D, Li B, Cai S, Wang P, Peng S. Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy. Biomaterials 2016;100:1-6.

Yu MK, Kim D, Lee IH, So JS, Jeong YY. Image‐guided prostate cancer therapy using aptamer‐functionalized thermally cross‐linked superparamagnetic iron oxide nanoparticles. Small 2011;7:2241-9.

Jalalian SH, Taghdisi SM, Hamedani NS, Kalat SA, Lavaee P. Epirubicin loaded superparamagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci 2013;50:191-7.

Lei Y, Tang J, Shi H, Ye X, He X. Nature-inspired smart DNA nanodoctor for activatable in vivo cancer imaging and in situ drug release based on the recognition-triggered assembly of split aptamer. Anal Chem 2016;88:11699-706.

Röthlisberger P, Gasse C, Hollenstein M. Nucleic acid aptamers: emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery. Int J Mol Sci 2017;18:2430.

Tao W, Zeng X, Wu J, Zhu X, Yu X. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics 2016;6:470.

Luo Z, Yan Z, Jin K, Pang Q, Jiang T. Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (l-γ-glutamylglutamine)–paclitaxel nanoconjugates. J Colloid Interface Sci 2017;490:783-96.

Gao H, Qian J, Cao S, Yang Z, Pang Z. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 2012;33:5115-23.

Gao H, Qian J, Yang Z, Pang Z, Xi Z. Whole-cell SELEX aptamer-functionalized poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials 2012;33:6264-72.

Karam FF, Alzayd AA. Swelling behavior Of Poly (AAM_MA) hydrogel matrix and study effects pH and ionic strength, enforcement in controlled release system. Int J Appl Pharm 2018;10:318-25.

Soontornworajit B, Zhou J, Shaw MT, Fan TH, Wang Y. Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release. Chem Comm 2010;46:1857-9.

Soontornworajit B, Zhou J, Wang Y. A hybrid particle–hydrogel composite for oligonucleotide-mediated pulsatile protein release. Soft Matter 2010;6:4255-61.

Soontornworajit B, Zhou J, Snipes MP, Battig MR, Wang Y. Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides. Biomaterials 2011;3228:6839-49.

Zhang Z, Chen N, Li S, Battig MR, Wang Y. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J Am Chem Soc 2012;134:15716-9.

Chen N, Zhang Z, Soontornworajit B, Zhou J, Wang Y. Cell adhesion on an artificial extracellular matrix using aptamer-functionalized PEG hydrogels. Biomaterials 2012;33:1353-62.

Kawadkar JI, Chauhan MK, Maharana MA. Nanobiotechnology: application of nanotechnology in diagnosis, drug discovery and drug development. Asian J Pharm Clin Res 2011;4:23-5.

Shah A, Parekh P, Parvez Azmi VR, Konale A, Palshikar G. Stem cell: a review. Asian J Pharm Clin Res 2011;4:7-12.

Li CJ, Cheng P, Liang MK, Chen YS, Lu Q. MicroRNA-188 regulates an age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 2015;125:1509-22.

Ardjomandi N, Niederlaender J, Aicher WK, Reinert S, Schweizer E. Identification of an aptamer binding to human osteogenic-induced progenitor cells. Nucleic Acid Ther 2013;23:44-61.

Published

01-12-2020

How to Cite

DIXIT, N., G. SAWANT, and H. KHAN. “A REVIEW ON APTAMERS IN GENE THERAPY AND THEIR APPLICATIONS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 12, no. 12, Dec. 2020, pp. 16-21, doi:10.22159/ijpps.2020v12i12.39241.

Issue

Section

Review Article(s)