COMPUTATIONAL APPROACHES RELATED TO DRUG DISPOSITION

Authors

  • SUPRIYO SAHA School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun 248161, Uttarakhand, India
  • DILIPKUMAR PAL Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C. G., 495009, India

DOI:

https://doi.org/10.22159/ijpps.2021v13i7.41531

Keywords:

Drug disposition, In silico pharmacokinetic parameter, Pharmacophore, QSAR/QSPR, Molecular docking, Homology modeling

Abstract

Drug disposition connects with the movement of drug molecules inside the body after administration irrespective with the route of administration. After entering the system, drug molecule and internal body systems comes under various pharmacokinetic interactions followed by observation of suitable biological activity. In this exhaustive process, physicochemical nature of the chemical substance and physiological nature of system makes this movement competitive. In this view, pharmacokinetic and toxic properties of the molecule regulates the destination of the molecule. Various computational processes are available for in silico pharmacokinetic assessment of drug molecule after absorption through biological membrane, distributed throughout the system based on the percent ionization or partition coefficient factors followed by biologically transformed into an another entity in presence of microsomal enzymes and finally excrete out from system using various cellular transport systems as well as related cellular toxicity behavior. In this chapter, we ensemble all the possible information related with the drug movement and related computational tools to understand the possible chemical and pathophysiological changes. Here detailed knowledge on database expedition, establishment of pharmacophore model, homology modelling based on sequence similarity, molecular docking study (rigid and flexible docking) and QSAR/QSPR study (with detailed process and available softwares) are provided. These diversely united informations actually helps a researcher to understand the factual movement of a drug molecule inside the system.

Downloads

Download data is not yet available.

References

Caldwell J, Gardner I, Swales N. An introduction to drug disposition: the basic principles of absorption, distribution, metabolism, and excretion. Toxicol Pathol 1995;23:102-14.

Saha S, Acharya M. Discovery of hydrazinecarboxamide or hydrazinecarbothioamide bearing small molecules as dual inhibitor of ras protein and carbonic anhydrase enzyme as potential anticancer agent using validated docking study and in silico admet profile. Res J Pharm Biol Chem Sci 2014;5:1884-93.

Saha S, Acharya M. Hydrazinecarboxamideor hydrazinecarbothioamide bearing small molecules as dual inhibitor of ras protein and carbonic anhydrase enzyme as potential anticancer agent-A MLR approach based on docking energy. Res Biotechnol 2014;5:15-23.

Saha S, Acharya M. In silico ADME-toxicity profiling, prediction of bioactivity and CNS penetrating properties of some newer resveratrol analogues. J Pharm Sci Tech 2014;3:98-105.

Saha S, Acharya M, Prinsa. 2D QSAR approach to develop newer analogs as melatonin receptor agonist. Dhaka University J Pharm Sci 2015;14:195-207.

Saha S, Banerjee A, Rudra A. 2D QSAR approach to develop newer generation molecules active aganist ERBB2 receptor kinase as potential anticancer agent. Int J Pharm Chem 2015;5:134-48.

Saha S, Constance V, Luv Kush, Percha V. Exploring descriptor combination by chemometric approach to develop newer molecules active through corticosteroid binding globulin receptor. J Appl Pharm 2015;7:223-36.

Pal D, Saha S. Chondroitin: a natural biomarker with immense biomedical applications. RSC Adv 2019;9:28061-77.

Saha S, Pal D, Nimse SB. Recent advances in the discovery of GSK-3 inhibitors from synthetic origin in the treatment of neurological disorders. Curr Drug Target 2021;21:1-26.

Kaushik B, Pal D, Saha S. Gamma secretase inhibitor: therapeutic target via NOTCH signaling in T cell acute lymphoblastic leukemia. Curr Drug Target 2021;21. DOI:10.2174/1389450122666210203192752.

Pedersen MG, Bersani AM. Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J Math Biol 2010;60:267-83.

Wolff K. Zero-order elimination kinetics. In: Stolerman IP. (eds) Encyclopedia of Psychopharmacology. Springer, Berlin, Heidelberg; 2010. p. 60-78.

Giacomini KM, Sugiyama Y. Membrane transporters and drug response. In: Goodman and gilman's the pharmacologic basis of therapeutics. In: Brunton LL, Lazo JS, Parker KL. (eds) 11th Ed. McGraw-Hill Medical Publishing Division New York; 2006. p. 41-70.

Yılmaz C, Ozcengiz G. Antibiotics: pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem Pharmacol 2017;133:43-62.

Evans AM, Nation RL, Sansom LN, Bochner F, Somogy AA. Stereoselective drug disposition: potential for misinterpretation of drug disposition data. Br J Clin Pharm 1998;26:771-80.

Wu CY, Benet LZ. Predicting drug disposition via application of BCS: Transport/Absorption/Elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005;22:11-23.

Muratov EN, Kuzmin VE, Artemenko AG, Kovdienko NA, Gorb L, Hill F, et al. New QSPR equations for prediction of aqueous solubility for military compounds. Chemosphere 2010;79:887-90.

Kang X, Qian J, Deng J, Latif U, Zhao Y. Novel molecular descriptors for prediction of H2S solubility in ionic liquids. J Mol Liquid 2018;265:756-64.

Saha S, Pal D, Log P. In: Wang Z. (ed) Encyclopedia of physical organic chemistry. 1st Ed. Vol. 1. Wiley Interscience, New York; 2017. p. 1-22.

Ghose AK, Viswanadhan VN, Wendoloski JJ. Prediction of hydrophobic (Lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J Phys Chem A 1998;102:3762-72.

Eedara BB, Tucker IG, Das SC. A STELLA simulation model for in vitro dissolution testing of respirable size particles. Sci Rep 2019;9:18522.

Naylor TA, Connolly PC, Martini LG, Elder DP, Minekus M, Havenaar R, et al. Use of a gastro-intestinal model and GASTROPLUS™ for the prediction of in vivo performance. Industr Pharm 2006;12:9-12.

Cheng F, Weihua L, Zhou Y, Shen J, Wu Z, Liu G, et al. AdmetSAR: a comprehensive source and free tool for evaluating chemical ADMET properties. J Chem Inf Model 2012;52:3099-105.

Ma X, Chen C, Yang J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol Sin 2005;26:500-12.

Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004;16:1-13.

Sivandzade F, Cucullo L. In vitro blood-brain barrier modeling: a review of modern and fast-advancing technologies. J Cereb Blood Flow Metab 2018;38:1667-81.

Alsenan S, Al-Turaiki I, Hafez A. A recurrent neural network model to predict blood–brain barrier permeability. Comput Biol Chem 2020;89:107377.

Deosarkar S, Prabhakarpandian B, Wang B, Sheffield JB, Krynska B, Kiani M. A novel dynamic neonatal blood-brain barrier on a chip. Plos One 2015;10:1-21.

Irudayanathan FJ, Trasatti JP, Karande P, Nangia S. Molecular architecture of the blood brain barrier tight junction proteins-a synergistic computational and in vitro approach. J Phys Chem B 2016;120:77-88.

Tervonen A, Ihalainen TO, Nymark S, Hyttinen J. Structural dynamics of tight junctions modulate the properties of the epithelial barrier. Plos One 2019;14:1-26.

Papa E, Van der Wal L, Arnot JA, Gramatica P. Metabolic biotransformation half-lives in fish: QSAR modelling and consensus analysis. STOTEN 2014;470-471:1040-6.

Sangion A, Gramatica P. PBT assessment and prioritization of contaminants of emerging concern: pharmaceuticals. Environ Res 2016;147:297-306.

Kazmi SR, Ren J, Yu MS, Jung C, Na D. In silico approaches and tools for the prediction of drug metabolism and fate: a review. Computers Biol Med 2019;106:54–64.

Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S. QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 2013;34:2121-32.

Giuliano B, Gabriele C, Raimund M. Pharmacophore, drug metabolism, and pharmacokinetics models on non-peptide AT1, AT2, and AT1/AT2 angiotensin II receptor antagonists. J Med Chem 2005;48:4389-99.

Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acid Res 2010;38:1767-71.

Stephen A, Warren G, Webb M, Eugene M, David JL. Basic local alignment search tool. J Mol Biol 1990;215:403-10.

Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011;32:1466-74.

Gareth J. GAPE: an improved genetic algorithm for pharmacophore elucidation. J Chem Inf Model 2010;50:2001-18.

Patel Y, Gillet VJ, Bravi G, Leach AR. A comparison of the pharmacophore identification programs: catalyst, DISCO and GASP. J Computer Aided Mol Design 2002;16:653-81.

Mortier J, Dhakal P, Volkamer A. Truly target-focused pharmacophore modeling: a novel tool for mapping intermolecular surfaces. Molecules 2018;23:1959.

Giuliano B, Nigel JW, Franco L. In silico prediction of total human plasma clearance. J Chem Inf Model 2012;52:2069-78.

Toshimoto K, Wakayama N, Kusama M, Maeda K, Sugiyama Y, Akiyama Y. In silico prediction of major drug clearance pathways by support vector machines with feature-selected descriptors. Drug Metabolism Disposition 2014;42:1811-19.

Watanabe R, Ohashi R, Esaki T, Kawashima H, Kitatani YN, Nagao C, et al. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Sci Rep 2019;9:18782.

Frank JD. 2-pharmacokinetics: the absorption, distribution, and fate of drugs. Frank JD, Barton SJ, Angelo JM. (eds). In: Pharmacology and therapeutics for dentistry. (Seventh Edition). Elsevier, Mosby; 2017. p. 15-43.

Shakil AS. Absorption, reference module in biomedical sciences. In: Encyclopedia of Toxicology, Elsevier; 2018. p. 1-6.

Stephen HC, Robin W. Drug disposition and pharmacokinetics: from principles to applications, John Wiley and Sons, Ltd; 2011.

Jiunn HL, Masayo Y. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 2003;42:59-98.

Finch A, Peter P. P-glycoprotein and its role in drug-drug interactions. Aust Prescr 2014;37:137-9.

Staud F, Pavek P. Molecules in focus breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol 2005;37:720-5.

Lara MM, Ilaria B, Kathleen MG. Nucleoside transporters in the disposition and targeting of nucleoside analogs in the kidney. Eur J Pharmacol 2003;479:269-81.

Fazlur R, Radhika R, Rajgopal G. Identification of structural and molecular features involved in the transport of 39-deoxy-nucleoside analogs by human equilibrative nucleoside transporter 3s. Drug Metab Dispos 2018;46:600-9.

Majumdar S, Mitra AK. Chemical modification and formulation approaches to elevated drug transport across cell membranes. Expert Opin Drug Delivery 2006;3:511-27.

Hamman JH, Enslin GM, Kotze AF. Oral delivery of peptide drugs: barriers and developments. BioDrugs 2005;19:165-77.

Ming Li, Qian W, Yong L, Shengtian C, Yingjun Z, Zhongqing W, et al. Apical sodium-dependent bile acid transporter, drug target for bile acid related diseases and delivery target for prodrugs: current and future challenges. Pharmacol Ther 2020;212:107539.

Ciarimboli G. Organic cation transporters. Xenobiotica 2008;38:936-71.

Yoshihisa S, Kazuya M, Kazuaki I, Kenta Y, Toshiharu H, Yuichi S. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 2013;34:45-78.

Allen DD, Smith QR. Characterization of the blood-brain barrier choline transporter using the in situ rat brain perfusion technique. J Neurochem 2001;76:1032-41.

Barwick KE, Wright J, Al-Turki S, McEntagart MM, Nair A, Chioza B, Al-Memar A, et al. Defective presynaptic choline transport underlies hereditary motor neuropathy. Am J Human Genetics 2012;91:1103-7.

Janowski PA, Moriarty NW, Kelley BP, Case DA, York DM, Adams PD, et al. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX. Acta Cryst 2016;D72:1062-72.

Wlodek S, Skillman AG, Nicholls A. Automated ligand placement and refinement with a combined force field and shape potential. Acta Cryst 2006;D62:741-9.

US EPA. Estimation programs interface suite™ for Microsoft® Windows, v 4.11 or insert version used]. United States Environmental Protection Agency, Washington, DC USA; 2021.

Arnot JA, Mackay D, Bonnell M. Estimating metabolic biotransformation rates in fish from laboratory data. Environ Toxicol Chem 2008;27:341-51.

Dimitrov S, Dimitrova N, Parkerton T, Comber M, Bonnell M, Mekenyan O. Base-line model for identifying the bioaccumulation potential of chemicals. SAR QSAR Environ Res 2005;16:531-54.

Irwin JJ, Brian K, Shoichet BK. ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 2005;45:177-82.

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 2021;49:D1388-395.

David RK, Carlos JC. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acid Res 2012;40:W409-14.

Schneidman Duhovny D, Oranit D, Yuval I, Ruth N, Haim JW. PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acid Res 2008;36:W223-28.

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acid Res 2018;46:W296-303.

Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, et al. The SWISS-MODEL repository-new features and functionality. Nucleic Acid Res 2017;45:D313-319.

Saha S, Banerjee S, Ganguly S. Molecular docking studies of some novel hydroxamic acid derivatives. Int J ChemTech Res 2010;2:932-6.

Banerjee S, Saha S, Dawn S. Design strategy of some novel tetrahydroquinoline analogs as potential non-nucleoside reverse transcriptase inhibitors. Der Pharm Lett 2010;2:154-62.

Nataraj SP, Khajamohiddin S, Jack T. Software for molecular docking: a review. Biophys Rev 2017;9:91-102.

Ojha PK, Roy K. Chemometric modeling of odor threshold property of diverse aroma components of wine. RSC Adv 2018;8:4750-60.

Aher RB, Roy K. Exploring the structural requirements in multiple chemical scaffolds for the selective inhibition of plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) by 3D-pharmacophore modelling, and docking studies. SAR QSAR Environ Res 2017;28:390-414.

Saha S, Pal D. Mathematical chemistry: an emerging field of drug discovery, scholars press: Germany; 2017.

Saha S, Prinsa, Acharya M. 2D QSAR approach to develop newer generation small molecules active against small lung cancer cell line DMS 114. J Appl Pharm 2015;7:135-47.

Thammisetty DP, Ranganayakulu D, Nayakanti D. Drug-related problems and its prescribing indicators in stroke patients: a prospective observational study. Asian J Pharm Clin Res 2021;14:141-4.

Shinde AK, Jadhav N, Shinde O, Patil P. Enhancement solubility and dissolution rate of paracetamol and ibuprofen by coamorphous particles using microwave technique: enhancement solubility and dissolution rate. Asian J Pharm Clin Res 2019;12:155-62.

Jha NK, Kumar P. Molecular docking studies for the comparative analysis of different biomolecules to target hypoxia inducible factor-1α. Int J Appl Pharm 2017;9:83-9.

Phoujdar MS, Aland GR. Molecular docking study on 1h-(3,4d) pyrazolo-pyrimidines as cyclin dependant kinase (cdk2) inhibitors. Int J Curr Pharm Res 2016;9:94-100.

Published

01-07-2021

How to Cite

SAHA, S., and D. PAL. “COMPUTATIONAL APPROACHES RELATED TO DRUG DISPOSITION”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 13, no. 7, July 2021, pp. 19-27, doi:10.22159/ijpps.2021v13i7.41531.

Issue

Section

Review Article(s)