EVALUATION OF IN VITRO ANTI-OXIDANT AND ANTI-ARTHRITIC ACTIVITY OF METHANOLIC EXTRACT OF MARINE GREEN ALGAE CAULERPA RACEMOSA
Keywords:
Caulerpa racemosa, Anti-oxidant, Diclofenac sodium, Anti-arthritic activity, Protein denaturationAbstract
Objective: The present study was aimed to evaluate in vitro anti-oxidant activity and in vitro anti arthritic activity of methanolic extract of Caulerpa racemosa.
Methods: The in vitro anti oxidant activity was evaluated by using following method viz; DPPH scavenging activity, Nitric oxide scavenging activity, Total anti-oxidant activity, Determination of reducing power. The in vitro anti arthritic activity was evaluated by using protein denaturation method.
Results: Methanolic extract of Caulerpa racemosa showed a very good anti-radical activity in scavenging DPPH radical and nitric oxide radical with maximum % inhibition of 88.87±1.05% at 2000μg/0.1 ml concentration and 80.49±1.43% at 2000μg/ml respectively. Total anti-oxidant activity and reducing power of Caulerpa racemosa was found to be 32μg equivalents of ascorbic acid at 500 μg/ml and 88.80±0.98% at 2000μg/0.05 ml respectively. The methanolic extract showed 49.33±0.597% of percentage inhibition at 1000μg/0.05 ml by protein denaturation method.
Conclusion: From the results obtained, it can be concluded that the methanolic extract of Caulerpa racemosa possesses significant anti-oxidant and anti-arthritic activity. Further studies are required to signify the mechanism of action of these pharmacological activities and to mark them out for their significant pharmacological actions.
Â
Downloads
References
Heo SJ, EJ Park, KW Lee, YJ Jeon. Antioxidant activities of enzymatic extract from brown sea weeds. Bioresour Technol 2005;96:1613-23.
Heinz Lullmann, Albrecht Ziegler, Klaus Mohr. Color atlas of pharmacology. 2nd ed; 2000. p. 320.
Goodman, Gilman. Manual of Pharmacology and Therapeutics. McGraw-Hill companies; 2008. p. 54.
L Shravan Kumar N, Kishore G, Siva Kumar G, SindhuPriya ES. In-vitro anti-inflammatory and anti-arthritic activity of leaves of Physalis angulata. Int J Pharm Ind Res 2011;1(03):211-3.
https://seaweedindustry.com/seaweed/type/caulerpa-racemosa
Blois Ms. Antioxidant determination by the use of stable free radical. Nature 1958;181:1199-200.
Sanchez Moreno C, Larraurij A, Saura-calixto FA. Free radical scavenging capacity of selected of selected red rose and white wines. J Sci Food Agric 1990;79:1301-4.
R Lavanya, S Umamaheshwari, G Harish, J Bharath Raj, S Kamali, D Hemamalini, et al. Uma Maheshwara Reddy. In-vitro anti-oxidant studies of Anisomeles malabarica and Coldenia procumbene L. Res J Pharm Biol Chem Sci 2010;1(4):737-44.
Polterait O. Antioxidants and free radical scavengers of natural origin. Curr Org Chem 1997;1:415-40.
Repetto MG, Liesuy SF. Antioxidant properties of natural compounds used in popular medicine for gastric ulcer. Braz J Med Biol Res 2002;35:523-34.
Satoskar RS, Bhandarkar SD, Anipure SS. Pharmacology and pharmacotherapeutics, In, Pharmacotherapy of gout. 18th edi. Rheumatoid arthritis and osteoarthritis; 2003. p. 1022-7.
Richaupadhyay, Jitendra kumar chaurasia, Kavindra Nath Tiwari, Karuna Singh. Antioxidant property of aerial parts and root of phyllanthus fraternus webster, an important medicinal plant. Scientific World J 2014;2014:2-5.
MR Saha, SMR Hasan, R Akter, MM Hossain, MS Alam, MA Alam, MEH Mazumder. In vitro free radical scavenging activity of methanol extract of the Leaves of mimuso pselengi linn. Bangl J Vet Med 2008;6(2):197–202.
Palash Mandal, Tarun Kumar Mishra, Mitali Ghosal. Free radical scavenging activity and phytochemical analysis in the leaf and stem of Drymaria diandra Blume. Int J Integr Biol 2009;7(2):80-4.
Mediacano A, Alcaraz O, Arnao MB. Free radical scavenging activity of indolic compounds. Anal Bioanal Chem 2003;376:33-7.
Oyaizu M. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Japan J Nutr 1986;44(6):307–15.
Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E. Anal Biochem 1999;269:337-41.
Raghu KL, Ramesh CK, Srinivasa TR, Jamuna KS. Total antioxidant capacity in aqueous extracts of some common vegetables. Asian J Exp Biol Sci 2011;2(1):58-62.
S Banerjee, A Chanda, A Ghoshal, R Debnath, S Chakraborty, R Saha, et al. Nitric oxide scavenging activity study of ethanolic extracts of from two different areas of kolkata ixora coccinea. Asian J Exp Biol Sci 2011;2(4):595-9.
Abubakar B Aliyu, Mohammed A Ibrahim, Aliyu M Musa, Aisha O Musa, Joyce J Kiplimo, Adebayo O Oyewale. Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl. (araceae). Acta Pol Pharm 2013;70(1):115-21.