OPTIMIZATION OF RIVASTIGMINE CHITOSAN NANOPARTICLES FOR NEURODEGENERATIVE ALZHEIMER; IN VITRO AND EX VIVO CHARACTERIZATIONS

Authors

  • MONA IBRAHIM El-ASSAL Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, 11835, Cairo, Egypt https://orcid.org/0000-0003-0829-443X
  • DALIA SAMUEL Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, 11835, Cairo, Egypt https://orcid.org/0000-0002-3315-1601

DOI:

https://doi.org/10.22159/ijpps.2022v14i1.43145

Keywords:

Chitosan, Ionotropic gelation, Polymeric nanoparticles, Rivastigmine, Alzheimer disease

Abstract

Objective: In an attempt to optimize the anti-Alzheimer effect, rivastigmine-loaded chitosan nanoparticles were developed in order to target of brain through skin permeation.

Methods: Rivastigmine-loaded chitosan-tripolyphosphate nanoparticles were prepared by modified ionic gelation method using tween 80 surfactants in different batches with variable chitosan/cross-linker ratios, desirability factors were applied to choose the optimal Nanocarrier and (F15) was selected. Different rivastigmine concentrations were loaded and the highest encapsulation efficiency formulae chosen for further study and evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetric (DSC). Further, drug loading, Ex-vivo skin permeation of Nano-gel, and kinetic studies were carried out in addition to stability along three months under different temperature.

Results: Particle size and polydispersity index showed average 291.6±7.70 to 490.6±7.42 d. nm. and 0.333±0.04 to 0.570±0.023 respectively. The nanoparticles were spherical in shape. Drug concentrations 4% w/w showed the highest drug entrapment efficiency (89.80%) and drug loading (40.81). Ex vivo studies shows that gel formulae of rivastigmine loaded chitosan nanoparticles was not irritant to rat skin had better skin permeation than chitosan nanoparticles aqueous dispersion also capable of releasing the drug in a sustained manner, and follow kinetic diffusion model. Optimum formula F15 was physical and chemical stable.

Conclusion: The experimental results showed the suitability of chitosan nanoparticles coated with a surfactant as a potential carrier for permeation through skin and brain, providing sustained delivery of rivastigmine.

Downloads

Download data is not yet available.

References

Chakraborty C, Sarkar B, Hsu CH, Wen ZH, Lin CS, Shieh PC. Future prospects of nanoparticles on brain targeted drug delivery. J Neurooncol. 2009;93(2):285-6. doi: 10.1007/s11060-008-9759-2, PMID 19048187.

Chen Y, Dalwadi G, Benson HAE. Drug delivery across the blood-brain barrier. Curr Drug Deliv. 2004;1(4):361-76. doi: 10.2174/1567201043334542, PMID 16305398.

Pasha K, Imtiyaz A. Evaluation of anti-alzheimer activity of alcoholic extract of Costus pictus D. Don leaves in wistar albino rats. Asian J Pharm Clin Res. 2020;13(2):36-43.

Saha P, Goyal AK, Rath G. Formulation and evaluation of cgitosan-based ampicillin trihydrate nanoparticles. Trop J Pharm Res. 2010;9(5):483-8.

Modi G, Pillay V, Choonara YE, Ndesendo VMK, du Toit LC, Naidoo D. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog Neurobiol. 2009;88(4):272-85. doi: 10.1016/j.pneurobio.2009.05.002, PMID 19486920.

Dustgani A, Farahani EV, Imani M. Preparation of chitosan nanoparticles loaded by dexamethasone sodium phosphate. Iran J Pharm Sci. 2008;4(2):111-4.

Hughes GA. Nanostructure–mediated drug delivery. Nanomedicine. 2005;1(1):22-30. doi: 10.1016/j.nano.2004.11.009, PMID 17292054.

Craparo EF, Pitarresi G, Bondì ML, Casaletto MP, Licciardi M, Giammona G. A nanoparticulate drug-delivery system for rivastigmine: Physico-chemical and in vitro biological characterization. Macromol Biosci. 2008;8(3):247-59. doi: 10.1002/mabi.200700165, PMID 18041108.

Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215-23. doi: 10.1016/j.yexmp.2008.12.004, PMID 19186176.

Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target. 2004;12(9-10):635-41. doi: 10.1080/10611860400015936, PMID 15621689.

Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47(1):65-81. doi: 10.1016/s0169-409x(00)00122-8, PMID 11251246.

Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic nanotechnology: an approach to study scope and potential applications. Front Chem. 2021;9:613343. doi: 10.3389/fchem.2021.613343. PMID 34113600.

Malhotra M, Kulamarva A, Sebak S, Paul A, Bhathena J, Mirzaei M, Prakash S. Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells. Drug Dev Ind Pharm. 2009;35(6):719-26. doi: 10.1080/03639040802526789, PMID 19514987.

Tekin S, Lane R. Rivastigmine in the treatment of dementia associated with parkinson’s disease: a randomized, double-blind, placebo-controlled study. Prog Neurother Neuropsychopharmacol. 2006;1(1):13-25. doi: 10.1017/S1748232105000030.

Kaur P, Rao R, Hussain A, Khatkar S. Preparation and characterization of rivastigmine loaded chitosan nanoparticles. J Pharm Sci Res. 2011;3(5):1227-32.

Mukhopadhyay S, Madhav NV, Upadhyaya K. Formulation and evaluation of bio-nanoparticulated drug delivery of rivastigmine. World J Pharm Sci. 2016;4(5):264-72.

Manek E, Darvas F, Petroianu GA. Use of biodegradable, chitosan-based nanoparticles in the treatment of Alzheimer’s diease. Molecules. 2020;25(4866):1-26.

Zynopsicha Armatazaka, TN Saifullah Sulaiman, Zulkarnain AK. Optimization and characterization of PEG-PCL-PEG triblock copolymer as carrier of drug-using full factorial design. Int J Curr Pharm Sci 2019;11(5):65-71. doi: 10.22159/ijcpr.2019v11i5.35706.

Liu C, Tan Y, Liu C, Chen X, Yu L. Preparations, characterizations and applications of chitosan–based nanoparticles. J Ocean Univ China. 2007;6(3):237-43. doi: 10.1007/s11802-007-0237-9.

Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361(1-2):104-11. doi: 10.1016/j.ijpharm.2008.05.031, PMID 18577437.

Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093-110. doi: 10.1021/mp300697h, PMID 23461379.

Hu CJ, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm. 1999;185(1):23-35. doi: 10.1016/s0378-5173(99)00122-2, PMID 10425362.

Yadav SK. Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration. New York: Springer; 2016.

Uppuluru AK, Gande S. Preparation and in vivo evaluation of candesartan cilexetil solid dispersions. Asian J Pharm Clin Res. 2021;14(8):129-33.

Chaitali S, Ruchi S, Ananya B, Srinivas P, Superiya S. Formulation and QBD optimization of methotrexate-loaded solid lipid nanoparticles for an effective anti-cancer treatment. Int J Appl Pharm. 2021;13(5):132-43.

Van-Abbe NJ, Nicholas P, Boon E. Exaggerated exposure in topical irritancy and sensitization testing. J Soc Cosmet Chem. 1975;26:173.

Nair VB, Panchagnula R. The effect of pretreatment with terpenes on transdermal iontophoretic delivery of arginine vasopressin. Farmaco. 2004;59(7):575-81. doi: 10.1016/j.farmac.2004.02.004, PMID 15231435.

Vashisth I, Ahad A, Aqil M, Agarwal SP. Investigating the potential of essential oils as penetration enhancer for transdermal losartan delivery: effectiveness and mechanism of action. Asian J Pharm Sci. 2014;9(5):260-7. doi: 10.1016/j.ajps.2014.06.007.

Pourjavadi A, Barzegar S, Mahdavinia GR. MBA-crosslinked Na-Alg/CMC as smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym. 2006;66(3):386-95. doi: 10.1016/j.carbpol.2006.03.013.

Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm. 2007;328(2):130-41. doi: 10.1016/j.ijpharm.2006.08.002, PMID 16997517.

Rajasree R, Rahate K. An overview on various modifications of chitosan and its applications. Int J Pharm Sci Res. 2013;4(11):4175-93.

Grenha A. Chitosan nanoparticles: a survey of preparation methods. J Drug Target. 2012;20(4):291-300. doi: 10.3109/1061186X.2011.654121, PMID 22296336.

Tiyaboonchai W. Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J. 2003;11(3):51-66.

Calvo P, Remunanaen-Lopez C, Vila Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125-32. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125:AID-APP13>3.0.CO;2-4.

Jonassen H, Kjøniksen AL, Hiorth M. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules. 2012;13(11):3747-56. doi: 10.1021/bm301207a, PMID 23046433.

Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces. 2012;90:21-7. doi: 10.1016/j.colsurfb.2011.09.042, PMID 22014934.

Nguyen TV, Nguyen TTH, Wang SL, Vo TPK, Nguyen AD. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res Chem Intermed. 2017;43(6):3527-37. doi: 10.1007/s11164-016-2428-8.

Alam S, Khan ZI, Mustafa G, Kumar M, Islam F, Bhatnagar A, Ahmad FJ. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine. 2012;7:5705-18. doi: 10.2147/IJN.S35329, PMID 23180965.

Allen DD, Smith QR. Characterization of the blood-brain barrier choline transporter using the in situ rat brain perfusion technique. J Neurochem. 2001;76(4):1032-41. doi: 10.1046/j.1471-4159.2001.00093.x, PMID 11181822.

Zhang Y, Pardridge WM. Rapid transferrin efflux from brain to blood across the blood-brain barrier. J Neurochem. 2001;76(5):1597-600. doi: 10.1046/j.1471-4159.2001.00222.x, PMID 11238745.

Raja MA, Katas H, Jing Wen T. Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-linkers. PLOS ONE. 2015;10(6):e0128963. doi: 10.1371/journal.pone.0128963. PMID 26068222.

Dhawade PP, Ramanand N. Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv Appl Sci Res. 2012;3(3):1372-82.

Helal DA, El-Rhman DA, Abdel-Halim SA. Formulation and evaluation of fluconazole topical gel. Int J Pharm Pharm Sci. 2012;4:176-83.

Obata Y, Utsumi S, Watanabe H, Suda M, Tokudome Y, Otsuka M, Takayama K. Infrared spectroscopic study of lipid interaction in stratum corneum treated with transdermal absorption enhancers. Int J Pharm. 2010;389(1-2):18-23. doi: 10.1016/j.ijpharm.2010.01.007, PMID 20079819.

Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930-4. doi: 10.1021/ja02086a003.

Higuchi T. Mechanism of sustained-action medication theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145-9. doi: 10.1002/jps.2600521210, PMID 14088963.

Macheras P, Dokoumetzidis A. On the heterogeneity of drug dissolution and release. Pharm Res. 2000;17(2):108-12. doi: 10.1023/a:1007596709657, PMID 10751023.

Published

01-01-2022

How to Cite

El-ASSAL, M. I., and D. SAMUEL. “OPTIMIZATION OF RIVASTIGMINE CHITOSAN NANOPARTICLES FOR NEURODEGENERATIVE ALZHEIMER; IN VITRO AND EX VIVO CHARACTERIZATIONS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 1, Jan. 2022, pp. 17-27, doi:10.22159/ijpps.2022v14i1.43145.

Issue

Section

Original Article(s)