BIOGENIC SYNTHESIS OF COPPER NANOPARTICLES AND THEIR BIOLOGICAL APPLICATIONS: AN OVERVIEW

Authors

  • SENTHIL KUMAR RAJU Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode 637205, Tamilnadu, India https://orcid.org/0000-0003-1309-3886
  • ANANDAKUMAR KARUNAKARAN Department of Pharmaceutical Analysis, Swamy Vivekanandha College of Pharmacy, Tiruchengode 637205, Tamilnadu, India https://orcid.org/0000-0002-9309-9286
  • SHRIDHARSHINI KUMAR Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode 637205, Tamilnadu, India https://orcid.org/0000-0002-2135-257X
  • PRAVEEN SEKAR Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode 637205, Tamilnadu, India https://orcid.org/0000-0002-3509-5981
  • MARUTHAMUTHU MURUGESAN Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode 637205, Tamilnadu, India https://orcid.org/0000-0002-7797-0473
  • MOHANAPRIYA KARTHIKEYAN Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode 637205, Tamilnadu, India https://orcid.org/0000-0002-1917-7127

DOI:

https://doi.org/10.22159/ijpps.2022v14i3.43842

Keywords:

Nanotechnology, Copper nanoparticles, Green synthesis, Plant extracts, Microorganisms, Biological applicaions

Abstract

Copper nanoparticles are one of the most promising agents in the field of nanotechnology which has the widest range of applications in various fields. Copper is an inorganic and safest material to humans, extensively used as an anti-bacterial, anti-fungal, anti-cancer agent and also as catalysts and sensors in high potential, peculiarly in nanosize. This emerged the preparation of CuNPs using various techniques. Many conventional methods have been employed for the synthesizing CuNPs which include electron beam lithography, inert gas condensation, ion implantation, laser ablation, mechanical milling, mechanical grinding, pulsed wire discharge, spray pyrolysis, vacuum vapour deposition, chemical reduction method, electrochemical method, microemulsion method, microwave method and solvothermal decomposition method. Relatively the biological method is highly recommended for the synthesis of CuNPs due to the absence of harmless chemicals, enhanced biocompatibility, eco-friendly, greater biological activity and low toxicity. This review is focussing on the biogenic synthesis of CuNPs using plants and micro-organisms, reaction conditions, characterization techniques and their applications.

Downloads

Download data is not yet available.

References

Joseph AT, Prakash P, Narvi SS. Phytofabrication and characterization of copper nanoparticles using Allium sativum and its antibacterial activity. Int J Sci Eng Technol. 2016;4:463-72.

Gupta M. Biosynthesized silver nanoparticles using Catharanthus roseus and their antibacterial efficacy in synergy with antibiotics: a future advancement in nanomedicine. Asian J Pharm Clin Res. 2021;14(2):116-24. doi: 10.22159/ajpcr.2021.v14i2.39856.

Shende S, Bhagat R, Raut R, Rai M, Gade A. Myco-fabrication of copper nanoparticles and its effect on crop pathogenic fungi. IEEE Trans Nanobioscience. 2021;20(2):146-53. doi: 10.1109/TNB.2021.3056100, PMID 33523815.

Yaqub A, Malkani N, Shabbir A, Ditta SA, Tanvir F, Ali S, Naz M, Kazmi SAR, Ullah R. Novel biosynthesis of copper nanoparticles using zingiber and allium sp. with synergic effect of doxycycline for anticancer and bactericidal activity. Curr Microbiol. 2020;77(9):2287-99. doi: 10.1007/s00284-020-02058-4, PMID 32535649.

Wang Z, Fang H, Wang S. Benzoic acid interactions affect aquatic properties and toxicity of copper oxide nanoparticles. Bull Environ Contam Toxicol. 2016;97(2):159-65. doi: 10.1007/s00128-016-1804-9, PMID 27098254.

Akturk A, Guler FK, Taygun ME, Goller G, Küçükbayrak S. Synthesis and antifungal activity of soluble starch and sodium alginate capped copper nanoparticles. Mater Res Express. 1250g3;6(12):6(12). doi: 10.1088/2053-1591/ab677e.

Sharma AK, Kumar A, Taneja G, Nagaich U, Deep A, Datusalia AK, Rajput SK. Combined and individual strategy of exercise generated preconditioning and low dose copper nanoparticles serve as a superlative approach to ameliorate ISO-induced myocardial infarction in rats. Pharmacol Rep. 2018;70(4):789-95. doi: 10.1016/j.pharep.2018.02.023, PMID 29957339.

Kruk T, Szczepanowicz K, Stefanska J, Socha RP, Warszynski P. Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B Biointerfaces. 2015;128:17-22. doi: 10.1016/j.colsurfb.2015.02.009. PMID 25723345.

Mudiar R, Kelkar Mane V. Original research article (Experimental): targeting fungal menace through copper nanoparticles and Tamrajal. J Ayurveda Integr Med. 2020;11(3):316-21. doi: 10.1016/j.jaim.2018.02.134, PMID 30594354.

Devipriya D, Roopan SM. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater Sci Eng C Mater Biol Appl. 2017;80:38-44. doi: 10.1016/j.msec.2017.05.130, PMID 28866178.

Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM. Plant-based biosynthesis of copper/copper oxide nanoparticles: an update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules. 2021;11(4):564. doi: 10.3390/biom11040564, PMID 33921379.

Ammar HA, Rabie GH, Mohamed E. Novel fabrication of gelatin-encapsulated copper nanoparticles using Aspergillus versicolor and their application in controlling of rotting plant pathogens. Bioprocess Biosyst Eng. 2019;42(12):1947-61. doi: 10.1007/s00449-019-02188-5, PMID 31435736.

Das PE, Abu-Yousef IA, Majdalawieh AF, Narasimhan S, Poltronieri P. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules. 2020;25(3):555. doi: 10.3390/molecules25030555, PMID 32012912.

Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother. 2017;89:1067-77. doi: 10.1016/j.biopha.2017.02.101, PMID 28292015.

Chung IM, Abdul Rahuman A, Marimuthu S, Kirthi AV, Anbarasan K, Padmini P, Rajakumar G. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med. 2017;14(1):18-24. doi: 10.3892/etm.2017.4466, PMID 28672888.

Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C Mater Biol Appl. 2018;82:46-59. doi: 10.1016/j.msec.2017.08.071, PMID 29025674.

Hasheminya SM, Dehghannya J. Green synthesis and characterization of copper nanoparticles using Eryngium caucasicum Trautv aqueous extracts and its antioxidant and antimicrobial properties. Part Sci Technol. 2020;38(8):1019-26. doi: 10.1080/02726351.2019.1658664.

Sathiyabama M, Indhumathi M, Amutha T. Preparation and characterization of curcumin functionalized copper nanoparticles and their application enhances disease resistance in chickpea against wilt pathogen. Biocatal Agric Biotechnol. 2020;29. doi: 10.1016/j.bcab.2020.101823, PMID 101823.

Benassai E, Del Bubba M, Ancillotti C, Colzi I, Gonnelli C, Calisi N, Salvatici MC, Casalone E, Ristori S. Green and cost-effective synthesis of copper nanoparticles by extracts of non-edible and waste plant materials from Vaccinium species: characterization and antimicrobial activity. Mater Sci Eng C Mater Biol Appl. 2021;119:111453. doi: 10.1016/j.msec.2020.111453.

Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S, Ibrahim E, Hani H. Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front Plant Sci. 2018;9:872. doi: 10.3389/fpls.2018.00872, PMID 30061904.

Weisany W, Samadi S, Amini J, Hossaini S, Yousefi S, Maggi F. Enhancement of the antifungal activity of thyme and dill essential oils against Colletotrichum nymphaeae by nano-encapsulation with copper NPs. Ind Crops Prod. 2019;132:213-25. doi: 10.1016/j.indcrop.2019.02.031.

Rajeshkumar S, Rinitha G. Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. OpenNano. 2018;3:18-27. doi: 10.1016/j.onano.2018.03.001.

El-Batal AI, Al-Hazmi NE, Mosallam FM, El-Sayyad GS. Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb Pathog. 2018;118:159-69. doi: 10.1016/j.micpath.2018.03.013, PMID 29530808.

Kaur P, Thakur R, Chaudhury A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev. 2016;9(1):33-8. doi: 10.1080/17518253.2016.1141238.

Paril P, Baar J, Cermak P, Rademacher P, Prucek R, Sivera M, Panacek A. Antifungal effects of copper and silver nanoparticles against white and brown-rot fungi. J Mater Sci. 2017;52(5):2720-9. doi: 10.1007/s10853-016-0565-5.

Wu S, Rajeshkumar S, Madasamy M, Mahendran V. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif Cells Nanomed Biotechnol. 2020;48(1):1153-8. doi: 10.1080/21691401.2020.1817053, PMID 32924614.

Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31(6):865-73. doi: 10.1007/s11274-015-1840-3, PMID 25761857.

Shende S, Gaikwad N, Bansod S. Synthesis and evaluation of antimicrobial potential of copper nanoparticle against agriculturally important phytopathogens. Synthesis. 2016;1(4):41-7.

Ahmad H, Venugopal K, Bhat AH, Kavitha K, Ramanan A, Rajagopal K, Srinivasan R, Manikandan E. Enhanced biosynthesis synthesis of copper oxide nanoparticles (CuO-NPs) for their antifungal activity toxicity against major phyto-pathogens of apple orchards. Pharm Res. 2020;37(12):246. doi: 10.1007/s11095-020-02966-x, PMID 33215292.

Shende S, Gaikwad N, Bansod S. Synthesis and evaluation of antimicrobial potential of copper nanoparticle against agriculturally important phytopathogens. Synthesis. 2016;1(4):41-7.

Tahvilian R, Zangeneh MM, Falahi H, Sadrjavadi K, Jalalvand AR, Zangeneh A. Green synthesis and chemical characterization of copper nanoparticles using Allium saralicum leaves and assessment of their cytotoxicity, antioxidant, antimicrobial, and cutaneous wound healing properties. Appl Organometal Chem. 2019;33(12):e5234. doi: 10.1002/aoc.5234.

Zhao H, Su H, Ahmeda A, Sun Y, Li Z, Zangeneh MM, Nowrozi M, Zangeneh A, Moradi R. Biosynthesis of copper nanoparticles using Allium eriophyllum Boiss leaf aqueous extract; characterization and analysis of their antimicrobial and cutaneous wound‐healing potentials. Appl Organometal Chem. 2020:e5587. doi: 10.1002/aoc.5587.

Pandit R, Gaikwad S, Rai M. Biogenic fabrication of CuNPs, Cu bioconjugates and in vitro assessment of antimicrobial and antioxidant activity. IET Nanobiotechnol. 2017;11(5):568-75. doi: 10.1049/iet-nbt.2016.0165, PMID 28745291.

Mali SC, Dhaka A, Githala CK, Trivedi R. Green synthesis of copper nanoparticles using Celastrus paniculatus willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol Rep (Amst). 2020;27:e00518. doi: 10.1016/j.btre.2020.e00518. PMID 32923378.

Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut. 2018;239:689-97. doi: 10.1016/j.envpol.2018.04.066, PMID 29715688.

Hassanien R, Husein DZ, Al-Hakkani MF. Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities. Heliyon. 2018;4(12):e01077. doi: 10.1016/j.heliyon.2018.e01077, PMID 30603710.

Rajesh KM, Ajitha B, Reddy YAK, Suneetha Y, Reddy PS. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: physical, optical and antimicrobial properties. Optik. 2018;154:593-600. doi: 10.1016/j.ijleo.2017.10.074. ijleo.2017.10.074.

Zangeneh MM, Ghaneialvar H, Akbaribazm M, Ghanimatdan M, Abbasi N, Goorani S, Pirabbasi E, Zangeneh A. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J Photochem Photobiol B. 2019;197:111556. doi: 10.1016/j.jphotobiol.2019.111556.

Asghar MA, Zahir E, Shahid SM, Khan MN, Asghar MA, Iqbal J, Walker G. Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin b1 adsorption activity. LWT. 2018;90:98-107. doi: 10.1016/j.lwt.2017.12.009.

Kiriyanthan RM, Sharmili SA, Balaji R, Jayashree S, Mahboob S, Al-Ghanim KA, Al-Misned F, Ahmed Z, Govindarajan M, Vaseeharan B. Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: a photodynamic approach. Photodiagn Photodyn Ther. 2020;32:102058. doi: 10.1016/j.pdpdt.2020.102058.

Amer MW, Awwad AM. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem Int. 2021;7(1):1-8. doi: 10.5281/zenodo.4017993.

Khani R, Roostaei B, Bagherzade G, Moudi M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) willd.: application for adsorption of triphenylmethane dye and antibacterial assay. J Mol Liq. 2018;255:541-9. doi: 10.1016/j.molliq.2018.02.010. molliq.2018.02.010.

Amaliyah S, Pangesti DP, Masruri M, Sabarudin A, Sumitro SB. Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon. 2020;6(8):e04636. doi: 10.1016/j.heliyon.2020.e04636, PMID 32793839.

Shah R, Pathan A, Vaghela H, Ameta SC, Parmar K. Green synthesis and characterization of copper nanoparticles using mixture (Zingiber officinale, Piper nigrum and Piper longum) extract and its antimicrobial activity. Chem Sci Trans. 2019;8(1):63-9. doi: 10.7598/cst2019.1517.

Aher HR, Han SH, Vikhe A, Kuchekar S. Green synthesis of copper nanoparticles using Syzygium cumin, leaf extract, characterization and antimicrobial activity. Chem Sci Trans. 2019;8(1):1-6. doi: 10.7598/cst2019.1552.

Kotval SC, John T, Parmar KA. Green synthesis of copper nanoparticles using Mitragyna parvifolia plant bark extract and its antimicrobial study. JNST. 2018;4(4):456-60. doi: 10.30799/jnst.133.18040415.

Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, Satija S, Gupta G, Chellappan DK, Thangavelu L, Dua K. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B. 2019;197:111531. doi: 10.1016/j.jphotobiol.2019.111531.

Mahmoudvand H, Khaksarian M, Ebrahimi K, Shiravand S, Jahanbakhsh S, Niazi M, Nadri S. Antinociceptive effects of green synthesized copper nanoparticles alone or in combination with morphine. Ann Med Surg (Lond). 2020;51:31-6. doi: 10.1016/j.amsu.2019.12.006. PMID 32042414.

Prabhu YT, Venkateswara Rao K, Sesha Sai V, Pavani T. A facile biosynthesis of copper nanoparticles: A micro-structural and antibacterial activity investigation. J Saudi Chem Soc. 2017;21(2):180-5. doi: 10.1016/j.jscs.2015.04.002.

Mukhopadhyay R, Kazi J, Debnath MC. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed Pharmacother. 2018;97:1373-85. doi: 10.1016/j.biopha.2017.10.167, PMID 29156527.

Jamdade DA, Rajpali D, Joshi KA, Kitture R, Kulkarni AS, Shinde VS, Bellare J, Babiya KR, Ghosh S. Gnidia glauca- and plumbago zeylanica-mediated synthesis of novel copper nanoparticles as promising antidiabetic agents. Adv Pharmacol Sci. 2019;2019:9080279. doi: 10.1155/2019/9080279.

Yugandhar P, Vasavi T, Uma Maheswari Devi PU, Savithramma N. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl Nanosci. 2017;7(7):417-27. doi: 10.1007/s13204-017-0584-9.

Paul JJ, Sakunthala M. Green synthesis of copper nanoparticles using Ctenolepis garcini (Burm. f) clarke CB. Int J Nanobiotechnol. 2017;3(2):1-6.

Paragas DS, Cruz KD, Fiegalan ER. Green synthesized copper nanoparticles from Blumea balsamifera linn. leaves and its biocidal activities against Bactrocera dorsalis (Hendel). Malays J Anal Sci. 2020;24(3):436-48.

Jinu U, Gomathi M, Saiqa I, Geetha N, Benelli G, Venkatachalam P. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb Pathog. 2017;105:86-95. doi: 10.1016/j.micpath.2017.02.019, PMID 28214590. micpath.2017.02.019.

Kothari R. Copper nanoparticles synthesized from Cinnamomum zeylanicum and its antibacterial activity. Am J Nanosci Nanotechnol. 2018;6(1):1-7.

Shammout M, Awwad A. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem Int. 2021;7(1):71-8.

Ituen E, Ekemini E, Yuanhua L, Li R, Singh A. Mitigation of microbial biodeterioration and acid corrosion of pipework steel using Citrus reticulata peels extract mediated copper nanoparticles composite. Int Biodeterior Biodegrad. 2020;149. doi: 10.1016/j.ibiod.2020.104935, PMID 104935.

Sulaiman GM, Tawfeeq AT, Jaaffer MD. Biogenic synthesis of copper oxide nanoparticles using Olea europaea leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study. Biotechnol Prog. 2018;34(1):218-30. doi: 10.1002/btpr.2568, PMID 28960911.

Alavi M, Karimi N. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif Cells Nanomed Biotechnol. 2018;46(8):2066-81. doi: 10.1080/21691401.2017.1408121, PMID 29233039.

Radhakrishnan R, Khan FL, Muthu A, Manokaran A, Savarenathan JS, Kasinathan K. Green synthesis of copper oxide nanoparticles mediated by aqueous leaf extracts of Leucas aspera and Morinda tinctoria. Lett Appl Nanobiosci. 2021;10(4):2706-14. doi: 10.33263/LIANBS104.27062714.

Singh A, Singh NB, Hussain I, Singh H. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol. 2017;262:11-27. doi: 10.1016/j.jbiotec.2017.09.016, PMID 28962841. jbiotec.2017.09.016.

Asghar MA, Asghar MA. Green synthesized and characterized copper nanoparticles using various new plants extracts aggravate microbial cell membrane damage after interaction with lipopolysaccharide. Int J Biol Macromol. 2020;160:1168-76. doi: 10.1016/j.ijbiomac.2020.05.198, PMID 32464203.

Khatami M, Heli H, Mohammadzadeh Jahani P, Azizi H, Lima Nobre MA. Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity. IET Nanobiotechnology. 2017;11(6):709-13. doi: 10.1049/iet-nbt.2016.0189.

Desalegn Zeleke T. Copper nanoparticles synthesized using Echinops sp. root extract for antimicrobial applications. Int J Nano Dimens. 2021;12(2):145-55. doi: 20.1001.1.20088868.2021.12.2.7.4.

Punniyakotti P, Panneerselvam P, Perumal D, Aruliah R, Angaiah S. Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess Biosyst Eng. 2020;43(9):1649-57. doi: 10.1007/s00449-020-02357-x, PMID 32367495.

Thakur S, Sharma S, Thakur S, Rai R. Green synthesis of copper nano-particles using Asparagus adscendens roxb. Root and leaf extract and their antimicrobial activities. Int J Curr Microbiol App Sci. 2018;7(4):683-94. doi: 10.20546/ ijcmas.2018.704.077.

Kirubandanan S, Subha V, Renganathan S. Green synthesis of copper nanoparticles using methanol extract of Passiflora foetida and its drug delivery applications. Int J Green Chem. 2017;3(2):31-52.

Merugu R, Nayak B, Chitturi KL, Kumari Misra P. Bimetallic silver and copper nanoparticles synthesis, characterization and biological evaluation using aqueous leaf extracts of Majorana hortensis. Mater Today Proc. 2021;44:2454-8. doi: 10.1016/j.matpr.2020.12.516.

Santhosh Kumar J, Shanmugam V. Green synthesis of copper oxide nanoparticles from Magnolia champaca floral extract and its antioxidant and toxicity assay using Danio rerio. Int J Recent Technol Eng. 2020;8:5444-9. doi: 10.35940/ ijrte.E6869.018520.

Rafique M, Tahir MB, Irshad M, Nabi G, Gillani SSA, Iqbal T, Mubeen M. Novel Citrus aurantifolia leaves based biosynthesis of copper oxide nanoparticles for environmental and wastewater purification as an efficient photocatalyst and antibacterial agent. Optik. 2020;219. doi: 10.1016/j.ijleo.2020.165138, PMID 165138.

Shiravand S, Mahmoudvand H, Ebrahimi K. Biosynthesis of copper nanoparticles using aqueous extract of capparis spinosa fruit and investigation of its antibacterial activity. MPJ. 2017;21(4):866-71. doi: 10.12991/mpj.2017.31.

Balakrishnan G, Shil S, Vijalakashmi N, Rao MR, Prabhu K. Green synthesis of copper nanocrystallites using triphala churna and their anti-microbial studies. Drug Invent Today. 2019;12(9):2038-44.

Pariona N, Mtz-Enriquez AI, Sanchez Rangel D, Carrion G, Paraguay Delgado F, Rosas Saito G. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 2019;9(33):18835-43. doi: 10.1039/C9RA03110C.

Padmavathi AR, P SM, Das A, Priya A, Sushmitha TJ, Pandian SK, Toleti SR. Impediment to growth and yeast-to-hyphae transition in Candida albicans by copper oxide nanoparticles. Biofouling. 2020;36(1):56-72. doi: 10.1080/ 08927014.2020.1715371, PMID 31997658.

Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM. Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci. 2016;11(13):1019-31. doi: 10.1080/17458080.2016.1184766.

Hao Y, Cao X, Ma C, Zhang Z, Zhao N, Ali A, Hou T, Xiang Z, Zhuang J, Wu S, Xing B, Zhang Z, Rui Y. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci. 2017;8:1332. doi: 10.3389/fpls.2017.01332, PMID 28824670.

Abboud MA. A novel biological approach to copper nanoparticles synthesis: characterization and its application against phytopathogenic fungi. Res Square. 2020. doi: 10.21203/rs.3. rs-125001/v1.

Viet PV, Nguyen HT, Cao TM, Hieu LV. Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater. 2016;2016:1-7. doi: 10.1155/2016/1957612.

Bramhanwade K, Shende S, Bonde S, Gade A, Rai M. Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett. 2016;14(2):229-35. doi: 10.1007/s10311-015-0543-1.

Shende S, Bhagat R, Raut R, Rai M, Gade A. Myco-fabrication of copper nanoparticles and its effect on crop pathogenic fungi. IEEE Trans Nanobioscience. 2021;20(2):146-53. doi: 10.1109/TNB.2021.3056100, PMID 33523815.

Pantano D, Neubauer N, Navratilova J, Scifo L, Civardi C, Stone V, von der Kammer F, Müller P, Sobrido MS, Angeletti B, Rose J, Wohlleben W. Transformations of nanoenabled copper formulations govern release, antifungal effectiveness, and sustainability throughout the wood protection lifecycle. Environ Sci Technol. 2018;52(3):1128-38. doi: 10.1021/acs.est.7b04130.est.7b04130. PMID 29373787.

Essa AM, Khallaf MK. Antimicrobial potential of consolidation polymers loaded with biological copper nanoparticles. BMC Microbiol. 2016;16(1):144. doi: 10.1186/s12866-016-0766-8, PMID 27400968.

Lalitha K, Kalaimurgan D, Nithya K, Venkatesan S, Shivakumar MS. Antibacterial, antifungal and mosquitocidal efficacy of copper nanoparticles synthesized from entomopathogenic nematode: Iinsect–host relationship of bacteria in secondary metabolites of Morganella morganii sp.(PMA1). Arabian J Sci Eng. 2020;45(6):4489-501. doi: 10.1007/s13369-020-04487-6.

Sriramulu M, Shanmugam S, Ponnusamy VK. Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: an in vitro study. Colloids Interface Sci Commun. 2020;35:100254. doi: 10.1016/j.colcom.2020.100254. colcom.2020.100254, PMID 100254.

Jayakrishnan P, Razack SA, Sivanesan K, Sellaperumal P, Ramakrishnan G, Subramanian S, Sahadevan R. A facile approach towards copper oxide nanoparticles synthesis using spirulina platensis and assessment of its biological activities. Braz J Biol Sci. 2018;5(10):433-42. doi: 10.21472/bjbs.051020.

John MS, Nagoth JA, Zannotti M, Giovannetti R, Mancini A, Ramasamy KP, Miceli C, Pucciarelli S. Biogenic synthesis of copper nanoparticles using bacterial strains Iisolated from an antarctic consortium associated to a psychrophilic marine ciliate: characterization and potential application as antimicrobial agents. Mar Drugs. 2021;19(5):263. doi: 10.3390/md19050263, PMID 34066868.

Rafique M, Shaikh AJ, Rasheed R, Tahir MB, Bakhat HF, Rafique MS, Rabbani F. A review on synthesis, characterization and applications of copper nanoparticles using the green method. Nano. 2017;12(04):1750043. doi: 10.1142/ S1793292017500436, PMID 1750043.

Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res Lett. 2017;12(1):1-5:638. doi: 10.1186/s11671-017-2399-8, PMID 29282555.

Slavin YN, Asnis J, Hafeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15(1):1-20:65. doi: 10.1186/s12951-017-0308-z, PMID 28974225.

Dorobantu LS, Fallone C, Noble AJ, Veinot J, Ma G, Goss GG, Burrell RE. Toxicity of silver nanoparticles against bacteria, yeast, and algae. J Nanopart Res. 2015;17(4):1-3. doi: 10.1007/s11051-015-2984-7.

Gomaa EZ, Housseiny MM, Omran AAA. Fungicidal efficiency of silver and copper nanoparticles produced by Pseudomonas fluorescens ATCC 17397 against four Aspergillus species: a molecular study. J Cluster Sci. 2019;30(1):181-96. doi: 10.1007/s10876-018-1474-3.

Mahlo SM, Chauke HR, McGaw L, Eloff J. Antioxidant and antifungal activity of selected medicinal plant extracts against phytopathogenic fungi. Afr J Tradit Complement Altern Med. 2016;13(4):216-22. doi: 10.21010/ajtcam.v13i4.28. v13i4.28. PMID 28852739.

Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S. Antifungal activity of aqueous extracts of some dominant Algerian medicinal plants. BioMed Research International. 2017;2017:7526291. doi: 10.1155/2017/7526291, PMID 29226147.

Wang S, Zheng Y, Xiang F, Li S, Yang G. Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L. J. Food Drug Anal. 2016;24(4):881-7. doi: 10.1016/j.jfda.2016.03.006.jfda.2016.03.006. PMID 28911628.

Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015;18:757-81. doi: 10.1016/j.jff.2015.01.047.jff.2015.01.047.

Zou Z, Xi W, Hu Y, Nie C, Zhou Z. Antioxidant activity of citrus fruits. Food Chem. 2016;196:885-96. doi: 10.1016/j.foodchem.2015.09.072, PMID 26593569.

Karpinski TM, Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics. 2018;10(2):54. doi: 10.3390/pharmaceutics10020054, PMID 29710857.

Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 2018;19(11):3533. doi: 10.3390/ijms19113533, PMID 30423952.

Sanjini NS, Winston B, Velmathi S. Effect of precursors on the synthesis of CuO nanoparticles under microwave for photocatalytic activity towards methylene blue and rhodamine b dyes. J Nanosci Nanotechnol. 2017;17(1):495-501. doi: 10.1166/jnn.2017.11785, PMID 29625519.

Joseph D, Baskaran S, Nagarajan M, Sivasubramnian S. Synthesis and characterization of silver nanoparticle from couroupita guianensis leaf extract and its effect on clinical pathogens. Asian J Pharm Clin Res 2020;12:117-21. doi: 10.22159/ajpcr.2020.v13i10.38859.

Das P. Nanoparticle insulin drug delivery-applications and new aspects. Int J Curr Pharm Sci. 2021;13(2):1-5. doi: 10.22159/ijcpr.2021v13i2.415482.

Kumar A, Pandit V, Nagaich U. Preparation and evaluation of copper nanoparticles loaded hydrogel for burns. Int J App Pharm. 2021;13(2):180-9. doi: 10.22159/ ijap.2021v13i2.40558.

Published

01-03-2022

How to Cite

RAJU, S. K., A. KARUNAKARAN, S. KUMAR, P. SEKAR, M. MURUGESAN, and M. KARTHIKEYAN. “BIOGENIC SYNTHESIS OF COPPER NANOPARTICLES AND THEIR BIOLOGICAL APPLICATIONS: AN OVERVIEW”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 3, Mar. 2022, pp. 8-26, doi:10.22159/ijpps.2022v14i3.43842.

Issue

Section

Review Article(s)