THERAPEUTICS APPROACHES OF INVERTEBRATE ANIMAL TOXINS: A REVIEW
DOI:
https://doi.org/10.22159/ijpps.2022v14i9.45520Keywords:
Invertebrates, Animal toxins, Ion channel blockers and therapeutic effectsAbstract
The present review article describes invertebrate venoms and various toxins secreted by them. Animal venoms are stores of novel peptides which exhibit a wide variety of biological effects and actively interact with pathogen and parasites. Animal toxins selectively bind to ion channels and receptors and display show hemolytic, cytolytic, proteolytic, anti-diabetic, antimicrobial and analgesic activity. These generate allergic and inflammatory responses in victims. These disrupt cell membranes and inhibit bacterial growth and kill them. Animal toxins inhibit virus entry into host cells and obstruct virus replication. These were also found highly effective against protozoan and fungal pathogens. By using bioinformatics tools, methods and approaches, both structural and functional diversity of toxin peptides could be harnessed to develop highly effective broad-spectrum drugs for therapeutics. Animal venoms are an inexhaustible source of bioactive molecules, which could be used for the development of immune diagnostics, various pharmaceuticals for therapeutics and bio-insecticides. Present article tries to explore the exceptional specificity and high potency of animal toxins for drug development.
Downloads
References
Babenko VV, Mikov AN, Manuvera VA, Anikanov NA, Kovalchuk SI, Andreev YA. Identification of unusual peptides with new Cys frameworks in the venom of the cold-water sea anemone Cnidopus japonicus. Sci Rep. 2017;7(1):14534. doi: 10.1038/s41598-017-14961-1, PMID 29109403.
Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel). 2013;6(1):108-51. doi: 10.3390/toxins6010108, PMID 24379089.
Mariottini GL, Pane L. Mediterranean jellyfish venoms: a review on Scyphomedusae. Mar Drugs. 2010;8(4):1122-52. doi: 10.3390/md8041122, PMID 20479971.
Lazcano Perez F, Zavala Moreno A, Rufino Gonzalez Y, Ponce Macotela M, Garcia Arredondo A, Cuevas Cruz M. Hemolytic, anticancer and antigiardial activity of Palythoa caribaeorum venom. J Venom Anim Toxins Incl Trop Dis. 2018;24:12. doi: 10.1186/s40409-018-0149-8, PMID 29692802.
Ben Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter- and intra-specific variation and the identification of an unusual actinoporin in stylophora pistilata. Sci Rep. 2018;8(1):251. doi: 10.1038/s41598-017-18355-1, PMID 29321526.
Leychenko E, Isaeva M, Tkacheva E, Zelepuga E, Kvetkina A, Guzev K. Multigene family of pore-forming toxins from sea anemone Heteractis crispa. Mar Drugs. 2018;16(6):183. doi: 10.3390/md16060183, PMID 29794988.
Tejuca M, Anderluh G, Macek P, Marcet R, Torres D, Sarracent J. Antiparasite activity of sea-anemone cytolysins on Giardia duodenalis and specific targeting with anti-Giardia antibodies. Int J Parasitol. 1999;29(3):489-98. doi: 10.1016/s0020-7519(98)00220-3, PMID 10333333.
Sintsova O, Gladkikh I, Kalinovskii A, Zelepuga E, Monastyrnaya M, Kim N. Magnificamide, a βdefensin-like peptide from the mucus of the sea anemone heteractis magnifica, is a strong inhibitor of mammalian α-amylases. Mar Drugs. 2019;17(10):542. doi: 10.3390/md17100542.
Ceolin Mariano DO, de Oliveira UC, Zaharenko AJ, Pimenta DC, Radis Baptista G, Prieto-da-Silva ARB. Bottom-up proteomic analysis of polypeptide venom components of the giant ant dinoponera quadriceps. Toxins (Basel). 2019;11(8):448. doi: 10.3390/toxins11080448, PMID 31362422.
Osmakov DI, Kozlov SA, Andreev YA, Koshelev SG, Sanamyan NP, Sanamyan KE. Sea anemone peptide with uncommon β-hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity. J Biol Chem. 2013;288(32):23116-27. doi: 10.1074/jbc.M113.485516, PMID 23801332.
Andreev YA, Osmakov DI, Koshelev SG, Maleeva EE, Logashina YA, Palikov VA. Analgesic activity of acid-sensing. Ion channels 3 (ASIС3) inhibitors: Sea anemones peptides Ugr9-1 and APETx2 versus low molecular weight compounds. Mar Drugs. 2012;16:500.
Babenko VV, Mikov AN, Manuvera VA, Anikanov NA, Kovalchuk SI, Andreev YA. Identification of unusual peptides with new Cys frameworks in the venom of the cold-water sea anemone cnidopus japonicus. Sci Rep. 2017;7(1):14534. doi: 10.1038/s41598-017-14961-1, PMID 29109403.
Gladkikh I, Monastyrnaya M, Zelepuga E, Sintsova O, Tabakmakher V, Gnedenko O. New kunitz-type HCRG polypeptides from the sea anemone heteractis crispa. Mar Drugs. 2015;13(10):6038-63. doi: 10.3390/md13106038, PMID 26404319.
Gladkikh I, Peigneur S, Sintsova O, Lopes Pinheiro Junior E, Klimovich A, Menshov A. Kunitz-type peptides from the sea anemone Heteractis crispa demonstrate potassium channel blocking and anti-inflammatory activities. Biomedicines. 2020;8(11):473. doi: 10.3390/biomedicines8110473, PMID 33158163.
Sintsova O, Gladkikh I, Monastyrnaya M, Tabakmakher V, Yurchenko E, Menchinskaya E. Sea anemone kunitz-type peptides demonstrate neuroprotective activity in the 6-hydroxydopamine induced neurotoxicity model. Biomedicines. 2021;9(3):283. doi: 10.3390/biomedicines9030283, PMID 33802055.
D’Ambra I, Lauritano C. A review of toxins from Cnidaria. Mar Drugs. 2020;18(10):507. doi: 10.3390/md18100507, PMID 33036158.
Kalina RS, Peigneur S, Zelepuga EA, Dmitrenok PS, Kvetkina AN, Kim NY. New insights into the type II toxins from the sea anemone Heteractis crispa. Toxins. 2020;12(1):44. doi: 10.3390/toxins12010044, PMID 31936885.
Monastyrnaya M, Peigneur S, Zelepuga E, Sintsova O, Gladkikh I, Leychenko E. Kunitz-type peptide HCRG21 from the sea anemone Heteractis crispa is a full antagonist of the TRPV1 receptor. Mar Drugs. 2016;14(12):229. doi: 10.3390/md14120229, PMID 27983679.
Gladkikh I, Monastyrnaya M, Leychenko E, Zelepuga E, Chausova V, Isaeva M. Atypical reactive center kunitz-type inhibitor from the sea anemone Heteractis crispa. Mar Drugs. 2012;10(7):1545-65. doi: 10.3390/md10071545, PMID 22851925.
Tauil CB, VON Glehn F, Nonato Rodrigues R, Gomes JRAA, Brandao CO, Santos LMBD. From charcot's descriptions to the current understanding of neuropsychiatric symptoms in multiple sclerosis. Arq Neuropsiquiatr. 2019;77(7):521-4. doi: 10.1590/0004-282X20190049, PMID 31365644.
Andreev YA, Kozlov SA, Koshelev SG, Ivanova EA, Monastyrnaya MM, Kozlovskaya EP. Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J Biol Chem. 2008;283(35):23914-21. doi: 10.1074/jbc.M800776200, PMID 18579526.
Dominguez Perez D, Campos A, Alexei Rodriguez A, Turkina MV, Ribeiro T, Osorio H. Proteomic analyses of the unexplored sea anemone Bunodactis verrucosa. Mar Drugs. 2018;16(2):42. doi: 10.3390/md16020042, PMID 29364843.
Chi V, Pennington MW, Norton RS, Tarcha EJ, Londono LM, Sims Fahey B. Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon. 2012;59(4):529-46. doi: 10.1016/j.toxicon.2011.07.016, PMID 21867724.
Li R, Yu H, Li T, Li P. Comprehensive proteome reveals the key lethal toxins in the venom of jellyfish Nemopile manomurai. J Proteome Res. 2020;19(6):2491-500. doi: 10.1021/acs.jproteome.0c00277, PMID 32374608.
Ovchinnikova TV, Balandin SV, Aleshina GM, Tagaev AA, Leonova YF, Krasnodembsky ED. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun. 2006;348(2):514-23. doi: 10.1016/j.bbrc.2006.07.078, PMID 16890198.
Li R, Yu H, Xue W, Yue Y, Liu S, Xing R. Jellyfish venomics and venom gland transcriptomics analysis of Stomolo phusmeleagristo reveal the toxins associated with sting. J Proteomics. 2014;106:17-29. doi: 10.1016/j.jprot.2014.04.011, PMID 24747124.
Li A, Yu H, Li R, Liu S, Xing R, Li P. Inhibitory effect of metalloproteinase inhibitors on skin cell inflammation induced by jellyfish nemopile manomurai nematocyst venom. Toxins (Basel). 2019;11(3):156. doi: 10.3390/toxins11030156, PMID 30857352.
Huang C, Morlighem JR, Zhou H, Lima EP, Gomes PB, Cai J. The transcriptome of the zoanthid protopalythoa variabilis (Cnidaria, Anthozoa) predicts a basal repertoire of toxin-like and venom-auxiliary polypeptides. Genome Biol Evol. 2016;8(9):3045-64. doi: 10.1093/gbe/evw204, PMID 27566758.
Dominguez Perez D, Campos A, Alexei Rodriguez A, Turkina MV, Ribeiro T, Osorio H. Proteomic analyses of the unexplored sea anemone Bunodactis verrucosa. Mar Drugs. 2018;16(2):42. doi: 10.3390/md16020042, PMID 29364843.
Ramirez Carreto S, Vera Estrella R, Portillo Bobadilla T, Licea Navarro A, Bernaldez Sarabia J, Rudino Pinera E. Transcriptomic and proteomic analysis of the tentacles and mucus of Anthopleuradowii verrill, 1869. Mar Drugs. 2019;17(8):436. doi: 10.3390/md17080436, PMID 31349621.
Orts B DJ, Peigneur S, Silva Gonçalves LC, Arcisio Miranda M, P W Bicudo JE. AbeTx1 Is a novel sea anemone toxin with a dual mechanism of action on shaker-type K⁺ channels activation. Mar Drugs. 2018;16:360.
Wanke E, Zaharenko AJ, Redaelli E, Schiavon E. Actions of sea anemone type 1 neurotoxins on voltage-gated sodium channel isoforms. Toxicon. 2009;54(8):1102-11. doi: 10.1016/j.toxicon. 2009.04.018, PMID 19393679.
Honma T, Minagawa S, Nagai H, Ishida M, Nagashima Y, Shiomi K. Novel peptide toxins from acrorhagi, aggressive organs of the sea anemone Actinia equina. Toxicon. 2005;46(7):768-74. doi: 10.1016/j.toxicon.2005.08.003, PMID 16183092.
Kalina RS, Koshelev SG, Zelepuga EA, Kim NY, Kozlov SA, Kozlovskaya EP. APETx-like peptides from the sea anemone Heteractis crispa, diverse in their effect on ASIC1a and ASIC3 ion channels. Toxins (Basel). 2020;12(4):266. doi: 10.3390/toxins12040266, PMID 32326130.
Kim CH, Lee YJ, Go HJ, Oh HY, Lee TK, Park JB. Defensin-neurotoxin dyad in a basally branching metazoan sea anemone. FEBS Journal. 2017;284(19):3320-38. doi: 10.1111/febs.14194, PMID 28796463.
Honma T, Minagawa S, Nagai H, Ishida M, Nagashima Y, Shiomi K. Novel peptide toxins from acrorhagi, aggressive organs of the sea anemone Actinia equina. Toxicon. 2005;46(7):768-74. doi: 10.1016/j.toxicon.2005.08.003, PMID 16183092.
Dominguez Perez D, Campos A, Alexei Rodriguez A, Turkina MV, Ribeiro T, Osorio H. Proteomic analyses of the unexplored sea anemone Bunodactis verrucosa. Mar Drugs. 2018;16(2):42. doi: 10.3390/md16020042, PMID 29364843.
Prentis PJ, Pavasovic A, Norton RS. Sea anemones: quiet achievers in the field of peptide toxins. Toxins (Basel). 2018;10(1):36. doi: 10.3390/toxins10010036, PMID 29316700.
James FK Jr, Pence HL, Driggers DP, Jacobs RL, Horton DE. Imported fire ant hypersensitivity. Studies of human reactions to fire ant venom. J Allergy Clin Immunol. 1976;58:110-20. doi: 10.1016/0091-6749(76)90112-3, PMID 947974.
Kim SC, Hong CS. A case of anaphylaxis by ant (Ectomomyrmex spp.) venom and measurements of specific IgE and IgG subclasses. Yonsei Med J. 1992;33(3):281-7. doi: 10.3349/ymj.1992.33.3.281, PMID 1292253.
Stafford CT. Hypersensitivity to fire ant venom. Ann Allergy Asthma Immunol. 1996;77(2):9587-96. doi: 10.1016/S1081-1206(10)63493-X, PMID 8760773.
Sousa PL, Quinet YP, Cavalcante Brizeno LA, Sampaio TL, Torres AF, Martins AM, Assreuy AM. The acute inflammatory response induced in mice by the venom of the giant ant Dinoponera quadriceps involves macrophage and interleukin-1β. Toxicon. 2016;117:22-9. doi: 10.1016/j.toxicon.2016.03.009, PMID 27018043.
Song Y, Kumar V, Wei HX, Qiu J, Stanley P. Lunatic, manic, and radical fringe each promote T and B cell development. J Immunol. 2016;196(1):232-43. doi: 10.4049/jimmunol.1402421, PMID 26608918.
Tani N, Kazuma K, Ohtsuka Y, Shigeri Y, Masuko K, Konno K, Inagaki H. Mass spectrometry analysis and biological characterization of the predatory ant odontomachus monticola venom and venom sac components. Toxins (Basel). 2019;11(1):50. doi: 10.3390/toxins11010050, PMID 30658410.
Touchard A, Aili SR, Fox EG, Escoubas P, Orivel J, Nicholson GM, Dejean A. The biochemical toxin arsenal from ant venoms. Toxins (Basel). 2016;8(1):30. doi: 10.3390/toxins8010030, PMID 26805882.
Krayem N, Abdelkefi Koubaa Z, Marrakchi N, Luis J, Gargouri Y. Anti-angiogenic effect of phospholipases A2 from scorpio maurus venom glands on Human umbilical vein Endothelial cells. Toxicon. 2018;145:6-14. doi: 10.1016/j.toxicon.2018.02.042, PMID 29486161.
Kvetkina A, Leychenko E, Chausova V, Zelepuga E, Chernysheva N, Guzev K. A newmultigene HCIQ subfamily from the sea anemone heterotactic crispa encodes kunitz-peptides exhibiting neuroprotective activity against 6-hydroxydopamine. Sci Rep. 2020;10(1):4205. doi: 10.1038/s41598-020-61034-x, PMID 32144281.
Lee H, Bae SK, Kim M, Pyo MJ, Kim M, Yang S. Anticancer effect of nemopile manomurai jellyfish venom on Hep G2 cells and a tumor xenograft animal model. Evid Based Complement Alternat Med. 2017:2752716. doi: 10.1155/2017/2752716, PMID 28785288.
Babenko VV, Mikov AN, Manuvera VA, Anikanov NA, Kovalchuk SI, Andreev YA. Identification of unusual peptides with new Cys frameworks in the venom of the cold-water sea anemone Cnidopus japonicus. Sci Rep. 2017;7(1):14534. doi: 10.1038/s41598-017-14961-1, PMID 29109403.
Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel). 2013;6(1):108-51. doi: 10.3390/toxins6010108, PMID 24379089.
Mariottini GL, Pane L. Mediterranean jellyfish venoms: a review on scyphomedusae. Mar Drugs. 2010;8(4):1122-52. doi: 10.3390/md8041122, PMID 20479971.
Lazcano Perez F, Zavala Moreno A, Rufino Gonzalez Y, Ponce Macotela M, Garcia Arredondo A, Cuevas Cruz M. Hemolytic, anticancer and antigiardial activity of palythoa caribaeorum venom. J Venom Anim Toxins Incl Trop Dis. 2018;24:12. doi: 10.1186/s40409-018-0149-8, PMID 29692802.
Alvarez C, Ros U, Valle A, Pedrera L, Soto C, Hervis YP. Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. Biophys Rev. 2017;9(5):529-44. doi: 10.1007/s12551-017-0316-0, PMID 28853034.
Merrifield RB, Juvvadi P, Andreu D, Ubach J, Boman A, Boman HG. Retro and retroenantio analogs of cecropin-melittin hybrids. Proc Natl Acad Sci USA. 1995;92(8):3449-53. doi: 10.1073/pnas.92.8.3449, PMID 7724582.
Anju G, Reetu G, Sudarshan K. Hanbook of research on diverse applications of nanotechnology in biomedicine, chemistry, and engineering. Soni Hershey, PA: Shivani; Hershey PA USA; 2015.
Stockwell VO, Duffy B. Use of antibiotics in plant agriculture. Rev Sci Tech. 2012;31(1):199-210. doi: 10.20506/rst.31.1.2104, PMID 22849276.
Badosa E, Ferre R, Planas M, Feliu L, Besaluu E, Cabrefiga J. A library of linear undecapeptides with bactericidal activity against phyto-pathogenic bacteria. Peptides. 2007;28(12):2276-85. doi: 10.1016/j.peptides.2007.09.010, PMID 17980935.
Rubner MF, Yang SY, Qiu Y, Lynn C, Lally JM. Method for making medical devices having antimicrobial coatings thereon. US20140112994. Toxins 2014;7:1126-50.
Baghian A, Jaynes J, Enright F, Kousoulas KG. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides. 1997;18(2):177-83. doi: 10.1016/s0196-9781(96)00290-2, PMID 9149288.
Wachinger M, Saermark T, Erfle V. Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells. FEBS Lett. 1992;309(3):235-41. doi: 10.1016/0014-5793(92)80780-k, PMID 1516693.
Ayed Y, Sghaier RM, Laouini D, Bacha H. Evaluation of anti-proliferative and anti-inflammatory activities of Pelagia noctiluca venom in lipopolysaccharide/interferon-γ stimulated RAW264.7 macrophages. Biomed Pharmacother. 2016;84:1986-91. doi: 10.1016/j.biopha.2016.11.010, PMID 27876211.
Loret EP, Luis J, Nuccio C, Villard C, Mansuelle P, Lebrun R. A low molecular weight protein from the sea anemone anemonia viridis with anti-angiogenic activity. Mar Drugs. 2018;16(4):134. doi: 10.3390/md16040134.
Kvetkina A, Leychenko E, Chausova V, Zelepuga E, Chernysheva N, Guzev K. A new multigene HCIQ subfamily from the sea anemone heteractis crispa encodes Kunitz-peptides exhibiting neuroprotective activity against 6-hydroxydopamine. Sci Rep. 2020;10(1):4205. doi: 10.1038/s41598-020-61034-x, PMID 32144281.
Daly JW, Noimai N, Kongkathip B, Kongkathip N, Wilham JM, Garraffo HM. Biologically active substances from amphibians: preliminary studies on anurans from twenty-one genera of Thailand. Toxicon. 2004;44(8):805-15. doi: 10.1016/j.toxicon.2004.08.016, PMID 15530960.
Kauskot A, Cominetti MR, Ramos OH, Bechyne I, Renard JM, Hoylaerts MF. Hemostatic effects of recombinant DisBa-01, a disintegrin from Bothrops alternatus. Front Biosci. 2008;13:6604-16. doi: 10.2741/3176, PMID 18508682.
Morjen M, Othman H, Abdelkafi-Koubaa Z, Messadi E, Jebali J, El Ayeb M. Targeting α1 inserted domain (I) of α1β1 integrin by Lebetin 2 from M. lebetina transmediterranea venom decreased tumorigenesis and angiogenesis. Int J Biol Macromol. 2018;117:790-9. doi: 10.1016/j.ijbiomac.2018.05.230, PMID 29870815.
Chalier F, Mugnier L, Tarbe M, Aboudou S, Villard C, Kovacic H, Gigmes D, Mansuelle P, de Pomyers H, Luis J, Mabrouk K. Isolation of an anti-tumour disintegrin: dabmaurin-1, a peptide lebein-1-Like, from daboia mauritanica venom. Toxins (Basel). 2020;12(2):102. doi: 10.3390/toxins12020102, PMID 32033352.
Roy A, Bharadvaja N. Venom derived bioactive compounds as potential anticancer agents: a review. Int J Pept Res Ther. 2021;27(1):129-47. doi: 10.1007/s10989-020-10073-z.
Jameel Al-Tamimi, Abdelhabib Semlali, Iftekhar Hassan, Hossam Ebaid, Ibrahim M Alhazza, Syed H Mehdi, Mohammed Al-Khalifa, Mohammad S. Alanazi cancer biotherapy and radiopharmaceuticals; 2018. p. 65-73.
Ebaid H, Al-Tamimi J, Hassan I, Alhazza I, Al-Khalifa M. Antioxidant bioactivity of samsum ant (Pachycondyla sennaarensis) venom protects against CCL₄-induced nephrotoxicity in mice. Oxid Med Cell Longev. 2014;2014:763061. doi: 10.1155/2014/763061, PMID 24803985.
Monincova L, Veverka V, Slaninova J, Budesinsky M, Fucik V, Bednarova L. “Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes (Hymenoptera: Melittidae). J Pept Sci. 2014;20(6):2014375-84375-84. doi: 10.1002/psc.2625, PMID 24616110.
Kim BY, Lee KS, Zou FM, Wan H, Choi YS, Yoon HJ. Antimicrobial activity of a honeybee (Apis cerana) venom Kazal-type serine protease inhibitor. Toxicon. 2013;76:110-7. doi: 10.1016/j.toxicon.2013.09.017, PMID 24076031.
Cujova S, Slaninova J, Monincova L, Fucik V, Bednarova L, Stokrova J. Panurgines, novel antimicrobial peptides from the venom of communal bee panurgus calcaratus (Hymenoptera: Andrenidae). Amino Acids. 2013;45(1):143-57. doi: 10.1007/s00726-013-1482-4, PMID 23483218.
Camara GA. A multi-omics approach unravels new toxins with possible in silico antimicrobial, antiviral, and antitumoral activities in the venom of acanthos curriarondoniae. Front Pharmacol 2020;11:1075.
Silva JC, Neto LM, Neves RC, Gonçalves JC, Trentini MM, Mucury Filho R. Evaluation of the antimicrobial activity of the mastoparan Polybia-MPII isolated from the venom of the social wasp Pseudo polybiavespicepstestacea (Vespidae, Hymenoptera). Int J Antimicrob Agents. 2017;49(2):167-75. doi: 10.1016/j.ijantimicag.2016.11.013, PMID 28108242.
Das Neves RC, Trentini MM, de Castro e Silva J, Simon KS, Bocca AL, Silva LP. Antimycobacterial activity of a new peptide polydim-I Iisolated from neotropical social wasp polybiadimorpha. PLoS One. 2016;11(3):e0149729. doi: 10.1371/journal.pone.0149729, PMID 26930596.
Ha YJ, Kim SW, Lee CW, Bae CH, Yeo JH, Kim IS. Anti-salmonella activity modulation of mastoparan V1-A wasp venom toxin-using protease inhibitors and its efficient production via an Escherichia coli secretion system. Toxins (Basel). 2017;9(10):321. doi: 10.3390/toxins9100321, PMID 29027924.
Rangel M, Castro FFDS, Mota Lima LD, Clissa PB, Martins DB, Cabrera MPDS. Polydim-I antimicrobial activity against MDR bacteria and its model membrane interaction. PLOS ONE. 2017;12(6):e0178785. doi: 10.1371/journal.pone.0178785, PMID 28570651.
Dos Santos Cabrera MP, Rangel M, Ruggiero Neto J, Konno K. Chemical and biological characteristics of antimicrobial α-helical peptides found in solitary wasp venoms and their interactions with model membranes. Toxins (Basel). 2019;11(10):112019:559. doi: 10.3390/toxins11100559, PMID 31554187.
Kim BY, Lee KS, Zou FM, Wan H, Choi YS, Yoon HJ. Antimicrobial activity of a honeybee (Apis cerana) venom Kazal-type serine protease inhibitor. Toxicon. 2013;76:110-7. doi: 10.1016/j.toxicon.2013.09.017, PMID 24076031.
Cesa Luna C, Munoz Rojas J, Saab Rincon G, Baez A, Morales Garcia YE, Juarez Gonzalez VR. Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria. PLOS ONE. 2019;14(11):e0222438. doi: 10.1371/journal.pone.0222438, PMID 31710627.
Zhang S, Gao B, Wang X, Zhu S. Loop replacement enhances the ancestral antibacterial function of a bifunctional scorpion. Toxins (Basel). 2018;4201810(6):227. doi: 10.3390/toxins10060227, PMID 29867003.
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci. 2015;72(23):722015:4501-224501-22. doi: 10.1007/s00018-015-2016-x, PMID 26286896.
Monincova L, Budesinsky M, Cujova S, Cerovsky V, Veverka V. Structural basis for antimicrobial activity of lasiocepsin. ChemBioChem. 2014;15(2):301-8. doi: 10.1002/cbic.201300509, PMID 24339323.
Ha YJ, Kim SW, Lee CW, Bae CH, Yeo JH, Kim IS. Anti-salmonella activity modulation of mastoparan V1-A wasp venom toxin-using protease inhibitors, and its efficient production via an Escherichia coli secretion system. Toxins (Basel). 2017;92017(10):321. doi: 10.3390/toxins9100321, PMID 29027924.
Rangel M. Polydim-I antimicrobial activity against MDR bacteria and its model membrane interaction. PLOS ONE. 2017;12(6):e0178785. doi: 10.1371/journal.pone.0178785, PMID 28570651.
Konno K, Kazuma K, Rangel M, Stolarz-de-Oliveira J, Fontana R, Kawano M. New mastoparan peptides in the venom of the solitary eumenine wasp Eumenes micado. Toxins (Basel). 2019;11(3):112019:155. doi: 10.3390/toxins11030155, PMID 30857348.
Lin Z, Wang RJ, Cheng Y, Du J, Volovych O, Han LB, Li JC. Insights into the venom protein components of Microplitis mediator, an endoparasitoid wasp. Insect Biochem Mol Biol. 2019;105:33-42. doi: 10.1016/j.ibmb.2018.12.013, PMID 30602123.
Vanha Aho LM, Anderl I, Vesala L, Hultmark D, Valanne S, Ramet M. Edin expression in the fat body is required in the defense against parasitic wasps in Drosophila melanogaster. PLOS Pathog. 2015;11(5):e1004895. doi: 10.1371/journal.ppat.1004895, PMID 25965263.
Dodou Lima HV, Sidrim de Paula Cavalcante C, Radis Baptista G. Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant dinoponera quadriceps venom, against carbapenem-resistant bacteria. Toxicon. 2020;187:19-28. doi: 10.1016/j.toxicon.2020.08.015, PMID 32861765.
Guzman J, Tene N, Touchard A, Castillo D, Belkhelfa H, Haddioui Hbabi L, Treilhou M, Sauvain M. Anti-helicobacter pylori properties of the ant-venom peptide bicarinalin. Toxins (Basel). 2017;10(1):21. doi: 10.3390/toxins10010021, PMID 29286296.
Tene N, Bonnafe E, Berger F, Rifflet A, Guilhaudis L, Segalas Milazzo I, Pipy B, Coste A, Leprince J, Treilhou M. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides. 2016;79:103-13. doi: 10.1016/j.peptides.2016.04.001, PMID 27058430.
Sabia Junior EF, Menezes LFS, de Araujo IFS, Schwartz EF. Natural occurrence in venomous arthropods of antimicrobial peptides active against protozoan parasites. Toxins (Basel). 2019;11(10):563. doi: 10.3390/toxins11100563, PMID 31557900.
Dominguez Perez D, Campos A, Alexei Rodriguez A, Turkina MV, Ribeiro T, Osorio H, Vasconcelos V, Antunes A. Proteomic analyses of the unexplored sea anemone Bunodactis verrucosa. Mar Drugs. 2018;16(2):42. doi: 10.3390/md16020042, PMID 29364843.
Mason B, Cooke I, Moya A, Augustin R, Lin MF, Satoh N, Bosch TCG, Bourne DG, Hayward DC, Andrade N, Foret S, Ying H, Ball EE, Miller DJ. AmAMP1 from Acropora millepora and damicornin define a family of coral-specific antimicrobial peptides related to the Shk toxins of sea anemones. Dev Comp Immunol. 2021;114:103866. doi: 10.1016/j.dci.2020.103866, PMID 32937163.
Zhao L, Huang Y, Dong Y, Han X, Wang S, Liang X. Aptamers and aptasensors for highly specific recognition and sensitive detection of marine biotoxins: recent advances and perspectives. Toxins (Basel). 2018;10(11):427. doi: 10.3390/toxins10110427, PMID 30366456.
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci. 2015;72(23):4501-22. doi: 10.1007/s00018-015-2016-x, PMID 26286896.
Silva JC, Neto LM, Neves RC, Gonçalves JC, Trentini MM, Mucury Filho R, Smidt KS. Evaluation of the antimicrobial activity of the mastoparan Polybia-MPII isolated from venom of the social wasp Pseudopolybia vespiceps testacea (Vespidae, Hymenoptera). Int J Antimicrob Agents. 2017;49(2):167-75. doi: 10.1016/j.ijantimicag.2016.11.013, PMID 28108242.
Jouvenaz DP, Blum MS, MacCONNELL JG. Antibacterial activity of venom alkaloids from the imported fire ant, Solenopsis invicta Buren. Antimicrob Agents Chemother. 1972;2(4):291-3. doi: 10.1128/AAC.2.4.291, PMID 4670503.
Wang K, Yan J, Chen R, Dang W, Zhang B, Zhang W, Song J, Wang R. Membrane-active action mode of polybia-CP, a novel antimicrobial peptide isolated from the venom of Polybia paulista. Antimicrob Agents Chemother. 2012;56(6):3318-23. doi: 10.1128/AAC.05995-11, PMID 22450985.
Hansen PR, Munk JK. Synthesis of antimicrobial peptoids. Methods Mol Biol. 2013;1047:151-9. doi: 10.1007/978-1-62703-544-6_11, PMID 23943485.
Willems J, Noppe W, Moerman L, van der Walt J, Verdonck F. Cationic peptides from scorpion venom can stimulate and inhibit polymorphonuclear granulocytes. Toxicon. 2002;40(12):1679-83. doi: 10.1016/s0041-0101(02)00183-6, PMID 12457879.
Dodou Lima HV, de Paula Cavalcante CS, Radis Baptista G. Corrigendum to “Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant dinoponera quadriceps venom, against carbapenem-resistant bacteria” [Toxicon 187 November 2020 19-28]. Toxicon. 2021;189:105-6. doi: 10.1016/j.toxicon.2020.11.004, PMID 33246629.
Rocha LQ, Orzaez M, Garcia Jareno AB, Nunes JVS, Duque BR, Sampaio TL, Alves RS, Lima DB, Martins AMC. Dinoponera quadriceps venom as a source of active agents against staphylococcus aureus. Toxicon. 2021;189:33-8. doi: 10.1016/j.toxicon.2020.11.003, PMID 33188823.
Tene N, Bonnafe E, Berger F, Rifflet A, Guilhaudis L, Segalas Milazzo I, Pipy B, Coste A, Leprince J, Treilhou M. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides. 2016;79:103-13. doi: 10.1016/j.peptides.2016.04.001, PMID 27058430.
Rifflet A, Gavalda S, Tene N, Orivel J, Leprince J, Guilhaudis L, Genin E, Vetillard A, Treilhou M. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum. Peptides. 2012;38(2):363-70. doi: 10.1016/j.peptides.2012.08.018, PMID 22960382.
Sabia Junior EF, Menezes LFS, de Araujo IFS, Schwartz EF. Natural occurrence in venomous arthropods of antimicrobial peptides active against protozoan parasites. Toxins (Basel). 2019;11(10):563. doi: 10.3390/toxins11100563, PMID 31557900.
Guo Z, Gu Y, Wang C, Zhang J, Shan S, Gu X, Wang K, Han Y, Ren T. Enforced expression of miR-125b attenuates LPS-induced acute lung injury. Immunol Lett. 2014 Nov;162:18-26. doi: 10.1016/j.imlet.2014.06.008, PMID 25004393.
Jindrichova B, Burketova L, Novotna Z. Novel properties of antimicrobial peptide anoplin. Biochem Biophys Res Commun. 2014;444(4):520-4. doi: 10.1016/j.bbrc.2014.01.097, PMID 24472551.
Singulani JL, Galeane MC, Ramos MD, Gomes PC, Dos Santos CT, de Souza BM, Palma MS, Fusco Almeida AM, Mendes Giannini MJS. Antifungal activity, toxicity, and membranolytic action of a mastoparan analog peptide. Front Cell Infect Microbiol. 2019 Dec 6;9:419. doi: 10.3389/fcimb.2019.00419, PMID 31867293.
Marcos CM, de Oliveira HC, Assato PA, de Andrade CR, Fusco-Almeida AM, Mendes Giannini MJS. Paracoccidioides brasiliensis 14-3-3 protein is important for virulence in a murine model. Med Mycol. 2019;57(7):900-4. doi: 10.1093/mmy/myy112, PMID 30476159.
Salas RL, Garcia JKDL, Miranda ACR, Rivera WL, Nellas RB, Sabido PMG. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin. Peptides. 2018;104:7-14. doi: 10.1016/j.peptides.2018.03.019, PMID 29614317.
Torres Rego M, Glaucia Silva F, Rocha Soares KS, de Souza LBFC, Damasceno IZ, Santos Silva ED, Lacerda AF, Chaves GM, Silva Junior AAD, Fernandes Pedrosa MF. Biodegradable cross-linked chitosan nanoparticles improve anti-Candida and anti-biofilm activity of TistH, a peptide identified in the venom gland of the Tityus stigmurus scorpion. Mater Sci Eng C Mater Biol Appl. 2019;103:109830. doi: 10.1016/j.msec.2019.109830, PMID 31349502.
Zeitler, Benjamin, Herrera Diaz A, Dangel A, Thellmann M, Meyer H, Sattler M. De-novo design of antimicrobial peptides for plant protection. PLOS ONE. 2013 Aug 12;8(8):e71687e71687. doi: 10.1371/journal.pone.0071687, PMID 23951222.
Ben-Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter- and intra-specific variation and the identification of an unusual actinoporin in stylophora pistilata. Sci Rep 2017;8:251.
Nicosia A, Maggio T, Mazzola S, Cuttitta A. Evidence of accelerated evolution and ectodermal-specific expression of presumptive BDS toxin cDNAs from Anemonia viridis. Mar Drugs. 2013;11(11):4213-31. doi: 10.3390/md11114213, PMID 24177670.
Gladkikh I, Peigneur S, Sintsova O, Lopes Pinheiro Junior E, Klimovich A, Menshov A. Kunitz type peptides from the sea anemone heterotactic crispa demonstrate potassium channel blocking and anti-inflammatory activities. Biomedicines. 2020;8(11):473. doi: 10.3390/biomedicines8110473, PMID 33158163.
Sintsova O, Gladkikh I, Monastyrnaya M, Tabakmakher V, Yurchenko E, Menchinskaya E. Sea anemone Kunitz type peptides demonstrate neuroprotective activity in the 6-hydroxydopamine induced neurotoxicity model. Biomedicines. 2021;9(3):283. doi: 10.3390/biomedicines9030283, PMID 33802055.
Uddin MB, Lee BH, Nikapitiya C, Kim JH, Kim TH, Lee HC, Kim CG, Lee JS, Kim CJ. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J Microbiol. 2016;54(12):853-66. doi: 10.1007/s12275-016-6376-1, PMID 27888461.
Lee WR, Kim KH, An HJ, Kim JY, Chang YC, Chung H, Park YY, Lee ML, Park KK. The protective effects of melittin on propionibacterium acnes-induced inflammatory responses in vitro and in vivo. J Invest Dermatol. 2014;134(7):1922-30. doi: 10.1038/jid.2014.75, PMID 24496237.
Sarhan M, El-Bitar AMH, Hotta H. Potent virucidal activity of honeybee ”Apis mellifera” venom against hepatitis C virus. Toxicon. 2020;188:55-64. doi: 10.1016/j.toxicon.2020.10.014, PMID 33068557.
Sample CJ, Hudak KE, Barefoot BE, Koci MD, Wanyonyi MS, Abraham S, Staats HF, Ramsburg EA. A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides. 2013;48:96-105. doi: 10.1016/j.peptides.2013.07.014, PMID 23891650.
Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu W, Song Z, Zhou W. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation. 2018;15(1):37. doi: 10.1186/s12974-017-1052-x, PMID 29426327.
Lu HY, Chen YH, Liu HJ. Baculovirus as a vaccine vector. Bioengineered. 2012;3(5):271-4. doi: 10.4161/bioe.20679, PMID 22705893.
Preet P. Peptides: a new therapeutic approach. Int J Curr Pharm Sci. 2018;10(2):29-34. doi: 10.22159/ijcpr.2018v10i2.25887.
Ahulwalia S, Shah N. Animal venom for treating breast cancer. International Journal of Pharmacy and Pharmaceutical Sciences. 2014;9:24-30.
Published
How to Cite
Issue
Section
Copyright (c) 2022 SIMRAN SHARMA, RAVI KANT UPADHYAY
This work is licensed under a Creative Commons Attribution 4.0 International License.