EUDRAGIT® RL100 MICROSPHERES AS DELAYED-RELEASE SYSTEM FOR IBUPROFEN: IN VITRO EVALUATION

Authors

  • APARNA DATTA Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, Kolkata 700053, West Bengal, India https://orcid.org/0000-0003-2246-0107
  • ABHRA DAS Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, Kolkata 700053, West Bengal, India
  • RAJKUMAR GHOSH Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, Kolkata 700053, West Bengal, India https://orcid.org/0000-0003-2246-0107

DOI:

https://doi.org/10.22159/ijpps.2022v14i12.45838

Keywords:

Eudragit® RL100, Ibuprofen, Microspheres, Solvent evaporation method, Encapsulation

Abstract

Objective: The objective of this study was to encapsulate ibuprofen in microspheres made of Eudragit® RL100 as the polymer and evaluate it in vitro.

Methods: Microspheres were prepared by the solvent evaporation method. Significant parameters in the evaluation of microencapsulation are yield, particle size, encapsulation efficiency, swelling index, uniformity factor and buoyancy. The in vitro release studies were carried out in phosphate buffer solution pH 7.4 at 37±1 ᵒC.

Results: Microspheres containing higher ratio of polymer had higher yields as high as 89.25%. The external diameter ranged from 300 to 550 μ, with geometric mean close to 420 μ. Evidently, the formulation containing higher concentration of Eudragit® RL100 had a larger diameter, indicating greater cross-linking and a larger sphere, signifying a higher loading capacity. The loading efficiency was above 81%, while the swelling index was found to be between 29% to 36%, with buoyancy factor of 74.53% for the superior batch. The results suggest that ibuprofen was successfully and efficiently encapsulated. The release rates of drug-loaded microspheres are related to the amount of polymer, thus, to get extended drug release while reducing the ill effects of the drug in the stomach. In vitro release was compared with marketed product, divulging better data for the indigenously prepared samples.

Conclusion: Data obtained by matching the in vitro release for the superior microspheres, so prepared and one of the commercial products showed the indigenous preparation of ibuprofen microspheres to be a better performer in the simulated gastric environment of phosphate buffer solution pH 7.4 at 37±1 ᵒC.

Downloads

Download data is not yet available.

References

Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109(1):1249-58. doi: 10.1016/j.biopha.2018.10.078.

Jain A, Mohanty PK. Self-regulatory drug transport: an intelligent drug delivery system. Ars Pharm. 2018;3(1):173-83.

Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306-23. doi: 10.7150/thno.14858, PMID 27375781.

Dhas SK, Deshmukh G. Formulation and evaluation of meloxicam microspheres for colon targeted drug delivery. Asian J Pharm Clin Res. 2021;14(8):45-51. doi: 10.22159/ajpcr.2021.v14i8.38482.

Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract–influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol. 2020;11(1):524. doi: 10.3389/fphar.2020.00524, PMID 32425781.

Saravanan M, Dhanaraju D, Sridhar SK, Ramachandran S, Kishore Gran Sam S, Anand P, Bhaskar K, Srinivasarao G. Preparation, characterization and in vitro release kinetics of ibuprofen polystyrene microspheres. Indian J Pharm Sci. 2004;66(3):287-92.

Bushra R, Aslam N. An overview of clinical pharmacology of ibuprofen. Oman Med J. 2010;25(3):155-1661. doi: 10.5001/omj.2010.49, PMID 22043330.

Krishna SA, Anusha K. Preparation and evaluation of ibuprofen loaded microspheres. Int J Basic Appl Sci. 2015;5(3):30-8.

Papola V, Rajan G, Eudragit BS, Two Most CT. Promising polymer for colon drug delivery. J Med Sci Clin Res. 2013;1(2):38-82.

Dabhi MR, Sheth NR. Optimization of novel mucoadhesive in situ film forming periodontal drug delivery system for chemotherapeutic agents. J Pharm Innov. 2014;9(2):83-94. doi: 10.1007/s12247-014-9175-4.

Singh V, Chaudhary AK. Preparation of Eudragit E100 microspheres by the modified solvent evaporation method. Acta Pol Pharm. 2011;68(6):975-80. PMID 22125964.

Visht S, Kulkarni GT. Studies on the preparation and in vitro-in vivo evaluation of mucoadhesive microspheres of glycyrrhetinic acid isolated from liquorice. Bangla Pharma J. 2015;18(1):30-7. doi: 10.3329/bpj.v18i1.23511.

Singh R, Irchhaiya R, Manjulata ARK, Gupta AK. Development and characterization of mucoadhesive microspheres of ofloxacin. Biosci Biotechnol Res Asia. 2008;5(2):719-26.

Gharti KP, Thapa P, Budhathoki U, Bhargava A. Formulation and in vitro evaluation of floating tablets of hydroxypropyl methylcellulose and polyethylene oxide using ranitidine hydrochloride as a model drug. J Young Pharm. 2012;4(4):201-8. doi: 10.4103/0975-1483.104363, PMID 23493037.

El-Say KM. Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using draper–lin small composite design. Drug Des Dev Ther. 2016;10:825-39. doi: 10.2147/DDDT.S101900, PMID 26966353.

Gomez PG, Campo JC, Zahonero C, Fuente M, Lain AH, Mira H. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma. Oncotarget. 2015;1(1):1-14.

Puthli S, Vavia PR. Stability studies of microparticulate system with piroxicam as model drug. AAPS PharmSciTech. 2009;10(3):872-80. doi: 10.1208/s12249-009-9280-8, PMID 19568938.

Wan B, Andhariya JV, Bao Q, Wang Y, Zou Y, Burgess DJ. Effect of polymer source on in vitro drug release from PLGA microspheres. Int J Pharm. 2021;607:120907. doi: 10.1016/j.ijpharm.2021.120907, PMID 34332059.

Gaur PK, Mishra S, Bajpai M. Formulation and evaluation of controlled-release of telmisartan microspheres: in vitro/in vivo study. J Food Drug Anal. 2014;22(4):542-8. doi: 10.1016/j.jfda.2014.05.001, PMID 28911472.

Nagpal M, Maheshwari DK, Rakha P, Dureja H, Goyal S, Dhingra G. Formulation development and evaluation of alginate microspheres of ibuprofen. J Young Pharm. 2012;4(1):13-6. doi: 10.4103/0975-1483.93573, PMID 22523454.

Pignatello R, Consoli P, Puglisi G. In vitro release kinetics of tolmetin from tabletted Eudragit microparticles. J Microencapsul. 2000;17(3):373-83. doi: 10.1080/ 026520400288337, PMID 10819424.

Karatas A, Sonakin O, Kili Carslan M, Baykara T. Poly (epsilon-caprolactone) microparticles containing levobunolol HCl prepared by a multiple emulsion (W/O/W) solvent evaporation technique: effects of some formulation parameters on microparticle characteristics. J Microencapsul. 2009;26(1):63-74. doi: 10.1080/02652040802141039, PMID 18608798.

Barkai A, Pathak YV, Benita S. Polyacrylate (Eudragit Retard) microspheres for oral controlled release of nifedipine. I. Formulation design and process optimization. Drug Dev Ind Pharm. 1990;16(13):2057-75. doi: 10.3109/ 03639049009023640.

Pongpaibal Y, Price JC, Whitworth CW. Preparation and evaluation of controlled release indomethacin microspheres. Drug Dev Ind Pharm. 1984;10(1):1597-616.

Jelvehgari M, Hassanzadeh D, Kiafar F, Delf Loveym B, Amiri S. Preparation and determination of drug-polymer interaction and in vitro release of mefenamic acid microspheres made of cellulose acetate phthalate and/or ethylcellulose polymers. Iran J Pharm Res. 2011;10(3):457-67. PMID 24250377.

Salatin S, Barar J, Barzegar Jalali M, Adibkia K, Alami Milani M, Jelvehgari M. Formulation and evaluation of Eudragit RL-100 nanoparticles loaded in situ forming gel for intranasal delivery of rivastigmine. Adv Pharm Bull. 2020;10(1):20-9. doi: 10.15171/apb.2020.003, PMID 32002358.

Hassan AS, Sapin A, Lamprecht A, Emond E, Ghazouani F, Maincent P. Composite microparticles with in vivo reduction of the burst release effect. Eur J Pharm Biopharm. 2009;1(1):337-44.

Shinde UA, Shete JN, Nair HA, Singh KH. Eudragit RL100 based microspheres for ocular administration of azelastine hydrochloride. J Microencapsul. 2012;29(6):511-9. doi: 10.3109/02652048.2012.665088, PMID 22375685.

Ram A, Raj PM, Kumar N, Raj R. Comparative study of Eudragit RS 100 and RL 100 nanoparticles as ophthalmic vehicle for fungal infection. Pharm Nanotechnol. 2016;4(1):1-13.

Gulshan M, Sai MLS, Hemalatha T, Sri UJ, Ramarao N. Formulation and development of microspheres for the treatment of familial adenomatous polyposis. Int J Appl Pharm. 2017;9(5):66-72. doi: 10.22159/ijap.2017v9i5.19731.

Published

01-12-2022

How to Cite

DATTA, A., A. DAS, and R. GHOSH. “EUDRAGIT® RL100 MICROSPHERES AS DELAYED-RELEASE SYSTEM FOR IBUPROFEN: IN VITRO EVALUATION”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 12, Dec. 2022, pp. 6-10, doi:10.22159/ijpps.2022v14i12.45838.

Issue

Section

Original Article(s)