DEVELOPMENT AND EVALUATION OF HYDROGEL OF AN ANTI-FUNGAL DRUG

Authors

  • SAYANTAN BHATTACHARYA Department of Pharmacy, Flemming College of Pharmacy, Balarampur, Mouza Beralia, Baruipur, Kolkata-700144, West Bengal, India https://orcid.org/0000-0002-6120-4379
  • BIPLAB PAUL Department of Pharmaceutics, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 B L Saha Road, Kolkata-700053, West Bengal, India
  • GOPA ROY BISWAS Department of Pharmaceutics, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 B L Saha Road, Kolkata-700053, West Bengal, India https://orcid.org/0000-0002-9197-4278

DOI:

https://doi.org/10.22159/ijpps.2023v15i10.48728

Keywords:

Hydrogel matrix, Antifungal, Topical gel

Abstract

Objective: Topical gel preparations are used for application on skin or to certain mucosal surfaces for local action or for their emollient or protective action. Topical delivery of drugs can be achieved by incorporating drugs into the hydrogel matrix for effective delivery of drugs, thus avoiding first-pass metabolism and for increased local action in pain management and skin diseases.

Methods: Hydrogel is a network of polymer chains that are hydrophilic, sometimes found as a colloidal gel in which water is the dispersion medium. Miconazole nitrate (MN) is a broad-spectrum antifungal agent of the imidazole group. It has been selected as a model drug for the preparation of hydrogel. For the preparation of hydrogel, Carbopol of different grades like 934p, 971p, and 974p have been selected. Drug–polymer interaction has been carried out by FT-IR spectroscopy. Standard curve of miconazole nitrate was prepared in phosphate buffer pH 5.5 and 7.4. Physico-chemical characteristics of the hydrogel, like pH, viscosity and % swelling index, were studied. % cumulative drug permeation study through dialysis membrane was done in phosphate buffer pH 7.4.

Results: The results were found to be satisfactory. Carbopols have been used in different ratios to get a number of formulations. Out of these, nine formulations have been chosen by their satisfactory physicochemical characteristics and used for the study. The average pH, viscosity, % swelling index and drug content were found to be 7.36, 1.09 x 100 cps, 23.1 and 98.36 %, respectively. Drug permeation kinetics through the dialysis membrane has been done in a Franz diffusion cell at phosphate buffer pH-7.4. The permeation of Miconazole Nitrate through the dialysis membrane was maximum in F1 and minimum in F9. The drug permeation through the dialysis membrane followed zero-order kinetics.

Conclusion: A sharp correlation between the % swelling index and the Cumulative % of drug permeated through the dialysis membrane has been found. With the increase in the % swelling index over a period of 6 h the permeation decreased; thus, the swelling of the formulations is responsible to inhibit the permeation of Miconazole Nitrate through the skin.

Downloads

Download data is not yet available.

References

Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater. 2013 Feb;23(6):660-72. doi: 10.1002/adfm.201201708.

Burkert S, Schmidt T, Gohs U, Dorschner H, Arndt KF. Cross-linking of poly(N-vinyl pyrrolidone) films by electron beam irradiation. Radiat Phys Chem. 2007 Aug-Sep;76(8-9):1324-8. doi: 10.1016/j.radphyschem.2007.02.024.

Zhao W, Jin X, Cong Y, Liu Y, Fu J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol. 2013 Mar 1;88(3):327-39. doi: 10.1002/jctb.3970.

Iizawa T, Taketa H, Maruta M, Ishido T, Gotoh T, Sakohara S. Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci. 2007 Apr;104(2):842-50. doi: 10.1002/app.25605.

Maolin Z, Jun L, Min Y, Hongfei H. The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of poly NIPA Am and hydrophilic polymers. Radiat Phys Chem. 2000 Jun 1;58(4):397-400. doi: 10.1016/S0969-806X(99)00491-0.

Hacker MC, Mikos AG. Principles of regenerative medicine. 2nd ed. Amsterdam: Elsevier Academic Press; 2011. p. 587.

Shin J, Braun PV, Lee W. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens Actuat B. 2010 Oct 21;150(1):183-90. doi: 10.1016/j.snb.2010.07.018.

Shin H, Quinten Ruhe P, Mikos AG, Jansen JA. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials. 2003 Aug;24(19):3201-11. doi: 10.1016/s0142-9612(03)00168-6, PMID 12763447.

Das S, Kumar V, Tiwari R, Singh L, Singh S. Recent advances in hydrogels for biomedical applications. Asian J Pharm Clin Res. 2018 Nov 7;11(11):62-8. doi: 10.22159/ajpcr.2018.v11i11.27921.

Ahmed AB, Ahmed R, Sengupta R. Formulation and in vitro/ex-vivo characterizations of microemulsion-based hydrogel formulation of aceclofenac for topical application. Asian J Pharm Clin Res. 2016 Aug 1;9(7):87-91.

Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638-49. doi: 10.1016/j.addr.2008.08.002, PMID 18840488.

Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H. Preparation of collagen–chondroitin sulfate–hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym. 2011 Feb;84(1):118-25. doi: 10.1016/j.carbpol.2010.11.009.

Mistry AS, Cheng SH, Yeh T, Christenson E, Jansen JA, Mikos AG. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res A. 2009 Apr;89(1):68-79. doi: 10.1002/jbm.a.32010, PMID 18428800.

Sikareepaisan P, Ruktanonchai U, Supaphol P. Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym. 2011 Feb;83(4):1457-69. doi: 10.1016/j.carbpol.2010.09.048.

Wang F, Li Z, Khan M, Tamama K, Kuppusamy P, Wagner WR. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater. 2010 Jun;6(6):1978-91. doi: 10.1016/j.actbio.2009.12.011, PMID 20004745.

Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016 Oct 18;1(12):1-17. doi: 10.1038/natrevmats.2016.71, PMID 29657852.

Stamatialis DF, Papenburg BJ, Girones M, Saiful S, Bettahalli SNM, Schmitmeier S. Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J Membr Sci. 2008 Oct 3;308(1-2):1-34. doi: 10.1016/j.memsci.2007.09.059.

Zohuriaan Mehr MJ, Kabiri K. Superabsorbent polymer materials: a review. Iran Polym J. 2008 Jun;17(6):451-77.

Shaikh Z. Design and development of topical hydrogel formulation of irbisartan. Int J Curr Pharm Sci. 2019 Jul 15;11(4):79-83. doi: 10.22159/ijcpr.2019v11i4.34924.

Garci Gonzalez N, Kellaway IW, Blanco Fuente H, Anguiano Igea S, Delgado Charro B, Otero Espinar FJ. Influence of glycerol concentration and carbopol molecular weight on swelling and drug release characteristics of metoclopramide hydrogels. International Journal of Pharmaceutics. 1994;104(2):107-13. doi: 10.1016/0378-5173(94)90185-6.

Bhoi NK, Singhai AK, Jain G, Mishra SS. Therapeutic efficacy of moxifloxacin mucoadhesive hydrogel for bacterial keratitis. J Drug Delivery Ther. 2020 Sep-Oct;10(5-s):186-90. doi: 10.22270/jddt.v10i5-s.4369.

Wang K, Fu Q, Chen X, Gao Y, Dong K. Preparation and characterization of pH-sensitive hydrogel for drug delivery system. RSC Adv. 2012 Aug;2(20):7772-80. doi: 10.1039/c2ra20989f.

Khanna R, Agarwal SP, Ahuja A. Preparation and evaluation of mucoadhesive buccal films of clotrimazole for oral candida infections. Indian J Pharm Sci. 1997 Nov-Dec;59(6):299-305.

Shewan HM, Stokes JR. Viscosity of soft spherical micro-hydrogel suspensions. J Colloid Interface Sci. 2015 Mar 15;442:75-81. doi: 10.1016/j.jcis.2014.11.064, PMID 25521552.

Harsh DC, Gehrke SH. Controlling the swelling characteristics of temperature-sensitive cellulose ether hydrogels. J Control Release. 1991 Oct;17(2):175-85. doi: 10.1016/0168-3659(91)90057-K.

Ramazani Harandi MJ, Zohuriaan Mehr MJ, Yousefi AA, Ershad Langroudi A, Kabiri K. Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polym Test. 2006 Jun;25(4):470-4. doi: 10.1016/j.polymertesting.2006.01.011.

Kowalski G, Kijowska K, Witczak M, Kuterasinski L, Lukasiewicz M. Synthesis and effect of structure on swelling properties of hydrogels based on high methylated pectin and acrylic polymers. Polymers. 2019 Jan;11(1):114. doi: 10.3390/polym11010114, PMID 30960098.

Krieg E, Bastings MM, Besenius P, Rybtchinski B. Supramolecular polymers in aqueous media. Chem Rev. 2016 Jan 4;116(4):2414-77. doi: 10.1021/acs.chemrev.5b00369, PMID 26727633.

Barillaro V, Bertholet P, Henry de Hassonville S, Ziemon E, Evrard B, Delattre L. Effect of acidic ternary compounds on the formation of miconazole/cyclodextrin inclusion complexes by means of supercritical carbon dioxide. J Pharm Pharm Sci. 2004 Nov 30;7(3):378-88. PMID 15576020.

Barillaro V, Dive G, Bertholet P, Evrard B, Delattre L, Frederich M. Theoretical and experimental investigations of organic acids/cyclodextrin complexes and their consequences upon the formation of miconazole/cyclodextrin/acid ternary inclusion complexes. Int J Pharm. 2008 Jan 22;347(1-2):62-70. doi: 10.1016/j.ijpharm.2007.06.030, PMID 17681684.

Chassenieux C, Nicolai T, Benyahia L. Rheology of associative polymer solutions. Curr Opin Colloid Interface Sci. 2011 Feb;16(1):18-26. doi: 10.1016/j.cocis.2010.07.007.

Vranic E. Basic principles of drug-excipients interactions. Bosn J Basic Med Sci. 2004 May;4(2):56-8. doi: 10.17305/bjbms.2004.3421, PMID 15629026.

Zhao ZJ, Wang Q, Zhang L, Liu YC. A different diffusion mechanism for drug molecules in amorphous polymers. J Phys Chem B. 2007 May 3;111(17):4411-6. doi: 10.1021/jp0673718, PMID 17428084.

Oliveira Cardoso VM, Stringhetti Ferreira Cury B, Evangelista RC, Daflon Gremiao MP. Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. J Mech Behav Biomed Mater. 2017 Jan;65:317-33. doi: 10.1016/j.jmbbm.2016.08.005, PMID 27631170.

Published

01-10-2023

How to Cite

BHATTACHARYA, S., B. PAUL, and G. R. BISWAS. “DEVELOPMENT AND EVALUATION OF HYDROGEL OF AN ANTI-FUNGAL DRUG”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 15, no. 10, Oct. 2023, pp. 29-33, doi:10.22159/ijpps.2023v15i10.48728.

Issue

Section

Original Article(s)