CURRENT PERSPECTIVES ON APPLICATIONS OF NANOPARTICLES FOR CANCER MANAGEMENT
DOI:
https://doi.org/10.22159/ijpps.2023v15i11.49319Keywords:
Cancer, Nanoparticles, Drug targeting, Drug delivery, ApplicationsAbstract
In the realm of cancer diagnostics, imaging and therapeutics, nanocarrier-based drug delivery systems have gained extensive importance owing to their promising attributes and potential to enhance therapeutic effectiveness. The primary area of research revolves around formulating innovative intelligent nanocarriers such as nanoparticles (NPs) which are capable of selectively responding to cancer-specific conditions and efficiently delivering medications to target cells. These nanocarriers, whether operating in a passive or active manner, can transport loaded therapeutic cargos to the tumor site while minimizing drug elimination from the drug delivery systems. This review primarily focuses on presenting recent advancements in the development and utilization of nanoparticles in the treatment of various cancer types, such as pancreatic cancer, prostate cancer, colorectal cancer, cervical cancer, and breast cancer.
Downloads
References
Perez Herrero E, Fernandez Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52-79. doi: 10.1016/j.ejpb.2015.03.018, PMID 25813885.
Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: an innovative and developing strategy. J Drug Deliv Sci Technol. 2020;60:102018. doi: 10.1016/j.jddst.2020.102018.
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1-18. doi: 10.1016/j.jare.2018.06.005, PMID 30581608.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. doi: 10.1016/j.cell.2011.02.013, PMID 21376230.
Sohrabi Kashani A, Packirisamy M. Cancer-nano-interaction: from cellular uptake to mechanobiological responses. Int J Mol Sci. 2021;22(17):9587. doi: 10.3390/ijms22179587, PMID 34502495.
Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics. 2021;13(8):1151. doi: 10.3390/pharmaceutics13081151, PMID 34452113.
Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198-205. doi: 10.1016/j.jconrel.2011.06.001, PMID 21663778.
Yu BO, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286-98. doi: 10.3109/09687688.2010.521200, PMID 21028937.
Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179-91. doi: 10.3109/1061186X.2015.1051049, PMID 26061298.
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27(10):2225-38. doi: 10.1021/acs.bioconjchem.6b00437, PMID 27547843.
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1-16. doi: 10.1146/annurev-bioeng-071811-150124, PMID 22524388.
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185-98. doi: 10.1111/jphp.13098, PMID 31049986.
Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor-targeted drug delivery. Mol Pharm. 2009;6(4):1041-51. doi: 10.1021/mp900090z, PMID 19366234.
Hansen AE, Petersen AL, Henriksen JR, Boerresen B, Rasmussen P, Elema DR. Positron emission tomography-based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano. 2015;9(7):6985-95. doi: 10.1021/acsnano.5b01324, PMID 26022907.
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941-51. doi: 10.1038/nbt.3330, PMID 26348965.
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11:812-8. doi: 10.1016/j.drudis.2006.07.005, PMID 16935749.
Kumar Khanna V. Targeted delivery of nanomedicines. ISRN Pharmacol. 2012;2012:571394. doi: 10.5402/2012/571394, PMID 22577576.
Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8(4):1172-81. PMID 11948130.
Cai H, Dai X, Wang X, Tan P, Gu L, Luo Q. A nanostrategy for efficient imaging-guided antitumor therapy through a stimuli-responsive branched polymeric prodrug. Adv Sci (Weinh). 2020;7(6):1903243. doi: 10.1002/advs.201903243, PMID 32195104.
Xu K, Wang M, Tang W, Ding Y, Hu A. Flash nanoprecipitation with GD(III)-based metallosurfactants to fabricate polylactic acid nanoparticles as highly efficient contrast agents for magnetic resonance imaging. Chem Asian J. 2020;15(16):2475-9. doi: 10.1002/asia.202000624, PMID 32543084.
Bhosale RR, Gangadharappa HV, Gowda DV, Osmani RAMA, Vaghela R, Kulkarni PK. Current perspectives on novel drug carrier systems and therapies for management of pancreatic cancer: an updated inclusive review. Crit Rev Ther Drug Carrier Syst. 2018;35(3):195-292. doi: 10.1615/CritRevTherDrugCarrierSyst.2018019429, PMID 29953347.
Yabar CS, Winter JM. Pancreatic cancer: a review. Gastroenterol Clin North Am. 2016;45(3):429-45. doi: 10.1016/j.gtc.2016.04.003, PMID 27546841.
Bursy D, Stas M, Milinski M, Biernat P, Balwierz R. Nanogold as a component of active drugs and diagnostic agents. Int J Appl Pharm. 2023;15(4):52-9.
Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010;7(3):163-72. doi: 10.1038/nrclinonc.2009.236, PMID 20101258.
Chu GC, Kimmelman AC, Hezel AF, DePinho RA. Stromal biology of pancreatic cancer. J Cell Biochem. 2007;101(4):887-907. doi: 10.1002/jcb.21209, PMID 17266048.
Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2007;6(4):1186-97. doi: 10.1158/1535-7163.MCT-06-0686, PMID 17406031.
Wong HH, Lemoine NR. Pancreatic cancer: molecular pathogenesis and new therapeutic targets. Nat Rev Gastroenterol Hepatol. 2009;6(7):412-22. doi: 10.1038/nrgastro.2009.89, PMID 19506583.
Klaiber U, Hackert T, Neoptolemos JP. Adjuvant treatment for pancreatic cancer. Transl Gastroenterol Hepatol. 2019;4:27. doi: 10.21037/tgh.2019.04.04, PMID 31143848.
Hani U, Osmani RA, Bhosale RR, Shivakumar HG, Kulkarni PK. Current perspectives on novel drug delivery systems and approaches for management of cervical cancer: a comprehensive review. Curr Drug Targets. 2016;17(3):337-52. doi: 10.2174/1389450116666150505154720, PMID 25944014.
Bhosale RR, Gangadharappa HV, Hani U, Ali M Osmani R, Vaghela R, Kulkarni PK. Current perspectives on novel drug delivery systems and therapies for management of prostate cancer: an inclusive review. Curr Drug Targets. 2017;18(11):1233-49. doi: 10.2174/1389450117666160613103705, PMID 27296312.
Yauch RL, Settleman J. Recent advances in pathway-targeted cancer drug therapies emerging from cancer genome analysis. Curr Opin Genet Dev. 2012;22(1):45-9. doi: 10.1016/j.gde.2012.01.003, PMID 22321987.
Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin. 2012;62(2):118-28. doi: 10.3322/caac.20141, PMID 22281605.
Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J Control Release. 2016;232:131-42. doi: 10.1016/j.jconrel.2016.03.023.
Valetti S, Maione F, Mura S, Stella B, Desmaële D, Noiray M. Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. J Control Release. 2014;192:29-39. doi: 10.1016/j.jconrel.2014.06.039, PMID 24984010.
Wang Z, Tong M, Chen X, Hu S, Yang Z, Zhang Y. Survivin-targeted nanoparticles for pancreatic tumor imaging in mouse model. Nanomedicine. 2016;12(6):1651-61. doi: 10.1016/j.nano.2016.02.008, PMID 26995092.
Rosenberger I, Strauss A, Dobiasch S, Weis C, Szanyi S, Gil-Iceta L. Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer. J Control Release. 2015;214:76-84. doi: 10.1016/j.jconrel.2015.07.017, PMID 26192099.
Wang L, Zhong X, Qian W, Huang J, Cao Z, Yu Q. Ultrashort echo time (UTE) imaging of receptor-targeted magnetic iron oxide nanoparticles in mouse tumor models. J Magn Reson Imaging. 2014;40(5):1071-81. doi: 10.1002/jmri.24453, PMID 25485347.
Mulens Arias V, Rojas JM, Perez Yague S, Morales P, Barber DF. Polyethylenimine-coated SPION exhibits potential intrinsic anti-metastatic properties inhibiting migration and invasion of pancreatic tumor cells. J Control Release. 2015;216:78-92. doi: 10.1016/j.jconrel.2015.08.009, PMID 26264831.
Caracciolo G, Caputo D, Pozzi D, Colapicchioni V, Coppola R. Size and charge of nanoparticles following incubation with human plasma of healthy and pancreatic cancer patients. Colloids Surf B Biointerfaces. 2014;123:673-8. doi: 10.1016/j.colsurfb.2014.10.008, PMID 25456990.
Lucero Acuna A, Guzman R. Nanoparticle encapsulation and controlled release of a hydrophobic kinase inhibitor: three stage mathematical modeling and parametric analysis. Int J Pharm. 2015;494(1):249-57. doi: 10.1016/j.ijpharm.2015.07.049, PMID 26216413.
Fu Q, Hargrove D, Lu X. Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomedicine. 2016;12(7):1951-9. doi: 10.1016/j.nano.2016.04.013, PMID 27151564.
Zhang B, Jiang T, Shen S, She X, Tuo Y, Hu Y. Cyclopamine disrupts tumor extracellular matrix and improves the distribution and efficacy of nanotherapeutics in pancreatic cancer. Biomaterials. 2016;103:12-21. doi: 10.1016/j.biomaterials.2016.06.048, PMID 27376555.
David KI, Jaidev LR, Sethuraman S, Krishnan UM. Dual drug loaded chitosan nanoparticles-sugar-coated arsenal against pancreatic cancer. Colloids Surf B Biointerfaces. 2015;135:689-98. doi: 10.1016/j.colsurfb.2015.08.038, PMID 26340358.
Yu X, Pu X, Xie C, Song Y, He H, Li H. An in vitro and in vivo study of gemcitabine-loaded albumin nanoparticles in a pancreatic cancer cell line. Int J Nanomedicine. 2015 Oct 30;10:6825-34. doi: 10.2147/IJN.S93835.
Dhamecha D, Jalalpure S, Jadhav K. Doxorubicin functionalized gold nanoparticles: characterization and activity against human cancer cell lines. Process Biochem. 2015;50(12):2298-306. doi: 10.1016/j.procbio.2015.10.007.
Vaghela R, Kulkarni PK, Osmani RAM, Bhosale RR, Naga Sravan Kumar Varma V. Recent advances in nanosystems and strategies for managing leishmaniasis. Curr Drug Targets. 2017;18(14):1598-621. doi: 10.2174/1389450117666160401124133, PMID 27033193.
Lughezzani G, Buffi NM. Locally-advanced prostate cancer in the elderly: should we revisit our treatment paradigms? Asian J Androl. 2015;17(5):769-70. doi: 10.4103/1008-682X.151394, PMID 25926604.
Mazaris E, Tsiotras A. Molecular pathways in prostate cancer. Nephrourol Mon. 2013;5(3):792-800. doi: 10.5812/numonthly.9430, PMID 24282788.
Horwich A, Parker C, Bangma C, Kataja V, ESMO Guidelines Working Group. Prostate cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21Suppl 5:129-33. doi: 10.1093/annonc/mdq174, PMID 20555062.
Heidegger I, Massoner P, Eder IE, Pircher A, Pichler R, Aigner F. Novel therapeutic approaches for the treatment of castration-resistant prostate cancer. J Steroid Biochem Mol Biol. 2013;138:248-56. doi: 10.1016/j.jsbmb.2013.06.002, PMID 23792785.
Kumar Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 2008;8(7):497-511. doi: 10.1038/nrc2402, PMID 18563191.
Fitzpatrick JM, Bellmunt J, Fizazi K, Heidenreich A, Sternberg CN, Tombal B. Optimal management of metastatic castration-resistant prostate cancer: highlights from a European expert consensus panel. Eur J Cancer. 2014;50(9):1617-27. doi: 10.1016/j.ejca.2014.03.010, PMID 24703899.
Wadajkar AS, Menon JU, Tsai YS, Gore C, Dobin T, Gandee L. Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials. 2013;34(14):3618-25. doi: 10.1016/j.biomaterials.2013.01.062, PMID 23419645.
Thangavel S, Yoshitomi T, Sakharkar MK, Nagasaki Y. Redox nanoparticles inhibit curcumin oxidative degradation and enhance its therapeutic effect on prostate cancer. J Control Release. 2015;209:110-9. doi: 10.1016/j.jconrel.2015.04.025.
Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials. 2014;35(30):8635-48. doi: 10.1016/j.biomaterials.2014.06.040, PMID 25028336.
Hoang B, Ernsting MJ, Murakami M, Undzys E, Li SD. Docetaxel-carboxymethylcellulose nanoparticles display enhanced anti-tumor activity in murine models of castration-resistant prostate cancer. Int J Pharm. 2014;471(1-2):224-33. doi: 10.1016/j.ijpharm.2014.05.021, PMID 24853460.
Badr G, Al-Sadoon MK, Rabah DM. Therapeutic efficacy and molecular mechanisms of snake (Walterinnesia aegyptia) venom-loaded silica nanoparticles in the treatment of breast cancer and prostate cancer-bearing experimental mouse models. Free Radic Biol Med. 2013;65:175-89. doi: 10.1016/j.freeradbiomed.2013.06.018, PMID 23811005.
Kasten BB, Liu T, Nedrow Byers JR, Benny PD, Berkman CE. Targeting prostate cancer cells with PSMA inhibitor-guided gold nanoparticles. Bioorg Med Chem Lett. 2013;23(2):565-8. doi: 10.1016/j.bmcl.2012.11.015, PMID 23232055.
Elzoghby AO, Saad NI, Helmy MW, Samy WM, Elgindy NA. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Eur J Pharm Biopharm. 2013;85(3 Pt A):444-51. doi: 10.1016/j.ejpb.2013.07.003, PMID 23872177.
Thirumalaivasan N, Venkatesan P, Lai PS, Wu SP. In vitro and in vivo approach of hydrogen-sulfide-responsive drug release driven by azide-functionalized mesoporous silica nanoparticles. ACS Appl Bio Mater. 2019;2(9):3886-96. doi: 10.1021/acsabm.9b00481, PMID 35021323.
Ryzhov A, Bray F, Ferlay J, Fedorenko Z, Goulak L, Gorokh Y. Recent cancer incidence trends in Ukraine and short-term predictions to 2022. Cancer Epidemiol. 2020;65:101663.
Karpisheh V, Nikkhoo A, Hojjat Farsangi M, Namdar A, Azizi G, Ghalamfarsa G. Prostaglandin E2 as a potent therapeutic target for the treatment of colon cancer. Prostaglandins Other Lipid Mediat. 2019;144:106338. doi: 10.1016/j.prostaglandins.2019.106338, PMID 31100474.
Mehta A, Patel BM. Therapeutic opportunities in colon cancer: focus on phosphodiesterase inhibitors. Life Sci. 2019;230:150-61. doi: 10.1016/j.lfs.2019.05.043, PMID 31125564.
Hu Z, Tan S, Chen S, Qin S, Chen H, Qin S. Diagnostic value of hematological parameters platelet to lymphocyte ratio and hemoglobin to platelet ratio in patients with colon cancer. Clin Chim Acta. 2020;501:48-52. doi: 10.1016/j.cca.2019.11.036, PMID 31809747.
Huryn DM, Kornfilt DJP, Wipf P. An emerging target for cancer, neurodegenerative diseases, and viral infections. J Med Chem. 2020;63(5):1892-907. doi: 10.1021/acs.jmedchem.9b01318, PMID 31550150.
Pavitra E, Dariya B, Srivani G, Kang SM, Alam A, Sudhir PR. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol. 2021;69:293-306. doi: 10.1016/j.semcancer.2019.06.017, PMID 31260733.
Selvam C, Prabu SL, Jordan BC, Purushothaman Y, Umamaheswari A, Hosseini Zare MS. Molecular mechanisms of curcumin and its analogs in colon cancer prevention and treatment. Life Sci. 2019;239:117032. doi: 10.1016/j.lfs.2019.117032, PMID 31704450.
Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int. 2014;2014:498420. doi: 10.1155/2014/498420, PMID 25165707.
Öztürk K, Mashal AR, Yegin BA, Calıs S. Preparation and in vitro evaluation of 5-fluorouracil-loaded PCL nanoparticles for colon cancer treatment. Pharm Dev Technol. 2017;22(5):635-41. doi: 10.3109/10837450.2015.1116565, PMID 26616273.
Wang R, Huang J, Chen J, Yang M, Wang H, Qiao H. Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3-gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. Nanomedicine. 2019;21:102068. doi: 10.1016/j.nano.2019.102068, PMID 31374249.
Shen MY, Liu TI, Yu TW, Kv R, Chiang WH, Tsai YC, Chen HH, Lin SC, Chiu HC. Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer. Biomaterials. 2019;197:86-100.
Munoz de Escalona M, Saez Fernandez E, Prados JC, Melguizo C, Arias JL. Magnetic solid lipid nanoparticles in hyperthermia against colon cancer. Int J Pharm. 2016;504(1-2):11-9. doi: 10.1016/j.ijpharm.2016.03.005, PMID 26969080.
Moskvin M, Babic M, Reis S, Cruz MM, Ferreira LP, Carvalho MD. Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids Surf B Biointerfaces. 2018;161:35-41. doi: 10.1016/j.colsurfb.2017.10.034, PMID 29040832.
Kamal R, Chadha VD, Dhawan DK. Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles (99mTc-Res-AuNP) in colon cancer tissue. Nanomedicine. 2018;14(3):1059-71. doi: 10.1016/j.nano.2018.01.008, PMID 29391211.
Hosseinzadeh H, Atyabi F, Varnamkhasti BS, Hosseinzadeh R, Ostad SN, Ghahremani MH. SN38 conjugated hyaluronic acid gold nanoparticles as a novel system against metastatic colon cancer cells. Int J Pharm. 2017;526(1-2):339-52. doi: 10.1016/j.ijpharm.2017.04.060, PMID 28455135.
Rudzinski WE, Palacios A, Ahmed A, Lane MA, Aminabhavi TM. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and pegylated chitosan nanoparticles. Carbohydr Polym. 2016;147:323-32. doi: 10.1016/j.carbpol.2016.04.041, PMID 27178938.
Mata R, Nakkala JR, Sadras SR. Polyphenol-stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells. Colloids Surf B Biointerfaces. 2016;143:499-510. doi: 10.1016/j.colsurfb.2016.03.069, PMID 27038915.
Anitha A, Sreeranganathan M, Chennazhi KP, Lakshmanan VK, Jayakumar R. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur J Pharm Biopharm. 2014;88(1):238-51. doi: 10.1016/j.ejpb.2014.04.017, PMID 24815764.
Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci. 2016;83:28-35. doi: 10.1016/j.ejps.2015.12.014, PMID 26690044.
Cai H, Xiang Y, Zeng Y, Li Z, Zheng X, Luo Q. Cathepsin B-responsive and gadolinium-labeled branched glycopolymer-PTX conjugate-derived nanotheranostics for cancer treatment. Acta Pharm Sin B. 2021;11(2):544-59. doi: 10.1016/j.apsb.2020.07.023, PMID 33643830.
Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518-27. doi: 10.1056/NEJMoa021641, PMID 12571259.
Schiffman M, Kjaer SK. Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr. 2003;(31):14-9. doi: 10.1093/oxfordjournals.jncimonographs.a003476, PMID 12807940.
Daling JR, Madeleine MM, Johnson LG, Schwartz SM, Shera KA, Wurscher MA. Human papillomavirus, smoking, and sexual practices in the etiology of anal cancer. Cancer. 2004;101(2):270-80. doi: 10.1002/cncr.20365, PMID 15241823.
Joshi SK, Jadon G. Introduction to neoplasm: tumor classification a review article. Int J Adv Res Pharm Biosci. 2012;1(2):227-63.
Castellsague X, Diaz M, de Sanjose S, Munoz N, Herrero R, Franceschi S. Worldwide human papillomavirus etiology of cervical adenocarcinoma and its cofactors: implications for screening and prevention. J Natl Cancer Inst. 2006;98(5):303-15. doi: 10.1093/jnci/djj067, PMID 16507827.
Wright TC, Cox JT, Massad LS, Twiggs LB, Wilkinson EJ, ASCCP-Sponsored Consensus Conference. 2001 consensus guidelines for the management of women with cervical cytological abnormalities. JAMA. 2002;287(16):2120-9. doi: 10.1001/jama.287.16.2120, PMID 11966387.
Steben M, Duarte Franco E. Human papillomavirus infection: epidemiology and pathophysiology. Gynecol Oncol. 2007;107(2)Suppl 1:S2-5. doi: 10.1016/j.ygyno.2007.07.067, PMID 17938014.
Hani U, Shivakumar HG. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review. Curr Drug Deliv. 2014;11(6):792-804. doi: 10.2174/1567201811666140825130003, PMID 25176028.
Calixto G, Bernegossi J, Fonseca Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine. 2014;9(9):3719-35. doi: 10.2147/IJN.S61670, PMID 25143724.
Dixit N, Vaibhav K, Pandey RS, Jain UK, Katare OP, Katyal A. Improved cisplatin delivery in cervical cancer cells by utilizing folate-grafted non-aggregated gelatin nanoparticles. Biomed Pharmacother. 2015;69:1-10. doi: 10.1016/j.biopha.2014.10.016, PMID 25661330.
Krishnakumar N, Sulfikkarali N, Rajendra Prasad NR, Karthikeyan S. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomed Prev Nutr. 2011;1(4):223-31. doi: 10.1016/j.bionut.2011.09.003.
Vivero Escoto JL, Slowing II, Lin VS. Tuning the cellular uptake and cytotoxicity properties of oligonucleotide intercalator-functionalized mesoporous silica nanoparticles with human cervical cancer cells HeLa. Biomaterials. 2010;31(6):1325-33. doi: 10.1016/j.biomaterials.2009.11.009, PMID 19932923.
Jeyaraj M, Rajesh M, Arun R, MubarakAli D, Sathishkumar G, Sivanandhan G. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B Biointerfaces. 2013;102:708-17. doi: 10.1016/j.colsurfb.2012.09.042, PMID 23117153.
Mikhailova EO. Gold nanoparticles: biosynthesis and potential of biomedical application. J Funct Biomater. 2021;12(4):70. doi: 10.3390/jfb12040070, PMID 34940549.
Saini J, Bansal V, Chandra A, Madan J, Jain UK, Chandra R. Bleomycin sulphate loaded nanostructured lipid particles augment oral bioavailability, cytotoxicity and apoptosis in cervical cancer cells. Colloids Surf B Biointerfaces. 2014;118:101-10. doi: 10.1016/j.colsurfb.2014.03.036, PMID 24732397.
Punfa W, Suzuki S, Pitchakarn P, Yodkeeree S, Naiki T, Takahashi S. Curcumin-loaded PLGA nanoparticles conjugated with anti-P-glycoprotein antibody to overcome multidrug resistance. Asian Pac J Cancer Prev. 2014;15(21):9249-58. doi: 10.7314/apjcp.2014.15.21.9249, PMID 25422208.
Tran TH, Nguyen CT, Gonzalez Fajardo L, Hargrove D, Song D, Deshmukh P. Long circulating self-assembled nanoparticles from cholesterol-containing brush-like block copolymers for improved drug delivery to tumors. Biomacromolecules. 2014;15(11):4363-75. doi: 10.1021/bm5013822, PMID 25310277.
Zhang P, Wu T, Kong JL. In situ monitoring of intracellular controlled drug release from mesoporous silica nanoparticles coated with pH-responsive charge-reversal polymer. ACS Appl Mater Interfaces. 2014;6(20):17446-53. doi: 10.1021/am5059519, PMID 25231082.
Xiong Q, Zhang M, Zhang Z, Shen W, Liu L, Zhang Q. Anti-tumor drug delivery system based on cyclodextrin-containing pH-responsive star polymer: in vitro and in vivo evaluation. Int J Pharm. 2014;474(1-2):232-40. doi: 10.1016/j.ijpharm.2014.08.018, PMID 25149124.
Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine. 2014;9:2479-88. doi: 10.2147/IJN.S59661, PMID 24899805.
Zhao C, Liu X, Liu J, Yang Z, Rong X, Li M. Transferrin conjugated poly (γ-glutamic acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine copolymer nanoparticles for targeting drug delivery. Colloids Surf B Biointerfaces. 2014;123:787-96. doi: 10.1016/j.colsurfb.2014.10.024, PMID 25454663.
Byagari K, Shanavas A, Rengan AK, Kundu GC, Srivastava R. Biocompatible amphiphilic pentablock copolymeric nanoparticles for anti-cancer drug delivery. J Biomed Nanotechnol. 2014;10(1):109-19. doi: 10.1166/jbn.2014.1791, PMID 24724503.
Kim TH, Lee GJ, Kang JH, Kim HJ, Kim TI, Oh JM. Anticancer drug-incorporated layered double hydroxide nanohybrids and their enhanced anticancer therapeutic efficacy in combination cancer treatment. BioMed Res Int. 2014;2014:193401. doi: 10.1155/2014/193401, PMID 24860812.
Reddy PD, Swarnalatha D. Recent advances in novel drug delivery systems. Int J PharmTech Res. 2010;2:2025-7.
Crozier JA, Swaika A, Moreno Aspitia A. Adjuvant chemotherapy in breast cancer: to use or not to use, the anthracyclines. World J Clin Oncol. 2014;5(3):529-38. doi: 10.5306/wjco.v5.i3.529, PMID 25114866.
Kalogerakos K, Sofoudis C, Baltayiannis N. Early breast cancer: a review. Cancer Ther. 2008;6:463-76.
Tao W, Zeng X, Liu T, Wang Z, Xiong Q, Ouyang C. Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater. 2013;9(11):8910-20. doi: 10.1016/j.actbio.2013.06.034, PMID 23816645.
Wu Y, Wang Z, Liu G, Zeng X, Wang X, Gao Y. Novel simvastatin-loaded nanoparticles based on cholic acid-core star-shaped PLGA for breast cancer treatment. J Biomed Nanotechnol. 2015;11(7):1247-60. doi: 10.1166/jbn.2015.2068, PMID 26307847.
Verderio P, Bonetti P, Colombo M, Pandolfi L, Prosperi D. Intracellular drug release from curcumin-loaded PLGA nanoparticles induces G2/M block in breast cancer cells. Biomacromolecules. 2013;14(3):672-82. doi: 10.1021/bm3017324, PMID 23350530.
Tekade RK, Tekade M, Kumar M, Chauhan AS. Dendrimer-stabilized smart-nanoparticle (DSSN) platform for targeted delivery of hydrophobic antitumor therapeutics. Pharm Res. 2015;32(3):910-28. doi: 10.1007/s11095-014-1506-0, PMID 25205461.
Veeranarayanan S, Poulose AC, Mohamed MS, Varghese SH, Nagaoka Y, Yoshida Y. Synergistic targeting of cancer and associated angiogenesis using triple-targeted dual-drug silica nanoformulations for theragnostics. Small. 2012;8(22):3476-89. doi: 10.1002/smll.201200874, PMID 22865683.
Nayak D, Minz AP, Ashe S, Rauta PR, Kumari M, Chopra P. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle-based formulation: characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J Colloid Interface Sci. 2016;470:142-52. doi: 10.1016/j.jcis.2016.02.043, PMID 26939078.
Parhi P, Sahoo SK. Trastuzumab guided nanotheranostics: a lipid-based multifunctional nanoformulation for targeted drug delivery and imaging in breast cancer therapy. J Colloid Interface Sci. 2015;451:198-211. doi: 10.1016/j.jcis.2015.03.049, PMID 25897856.
Mkandawire MM, Lakatos M, Springer A, Clemens A, Appelhans D, Krause-Buchholz U. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles. Nanoscale. 2015;7(24):10634-40. doi: 10.1039/c5nr01483b, PMID 26022234.
Li N, Li N, Yi Q, Luo K, Guo C, Pan D. Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to an enzyme-responsive anti-cancer agent. Biomaterials. 2014;35(35):9529-45. doi: 10.1016/j.biomaterials.2014.07.059, PMID 25145854.
Zhang C, Pan D, Luo K, She W, Guo C, Yang Y. Peptide dendrimer–doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv Healthc Mater. 2014;3(8):1299-308. doi: 10.1002/adhm.201300601, PMID 24706635.
She W, Li N, Luo K, Guo C, Wang G, Geng Y. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials. 2013;34(9):2252-64. doi: 10.1016/j.biomaterials.2012.12.017, PMID 23298778.
Hu G, Chun X, Wang Y, He Q, Gao H. Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment. Oncotarget. 2015;6(38):41258-74. doi: 10.18632/oncotarget.5692, PMID 26517810.
Ruan S, Zhang L, Chen J, Cao T, Yang Y, Liu Y. Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer. RSC Adv. 2015;5:64303-17.
Sábio RM, Meneguin AB, Ribeiro TC, Silva RR, Chorilli M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int J Pharm. 2019;564:379-409. doi: 10.1016/j.ijpharm.2019.04.067, PMID 31028801.
Nosrati H, Mojtahedi A, Danafar H, Kheiri Manjili H. Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J Biomed Mater Res A. 2018;106(6):1646-54. doi: 10.1002/jbm.a.36364, PMID 29441671.
Attari E, Nosrati H, Danafar H, Kheiri Manjili HK. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. J Biomed Mater Res A. 2019;107(11):2492-500. doi: 10.1002/jbm.a.36755, PMID 31298774.
Asgari M, Soleymani M, Miri T, Barati A. A robust method for fabrication of monodisperse magnetic mesoporous silica nanoparticles with core-shell structure as anticancer drug carriers. J Mol Liq. 2019;292:111367.
Gupta M. Synergistic anticancer effects of natural products and their mode of action. Asian J Pharm Clin Res. 2021;14(2):15-21.
Galankar VP, Basarkar GD, Bagad PD. An introduction to nanotechnology. Asian J Pharm Clin Res. 2022;15(10):10-6.
Published
How to Cite
Issue
Section
Copyright (c) 2023 ROHIT R. BHOSALE, BHAGYESH U. JANUGADE, DHANASHRI D. CHAVAN, VANDANA M. THORAT
This work is licensed under a Creative Commons Attribution 4.0 International License.