NANOENCAPSULATION OF LUTEOLIN: ENHANCING BIOAVAILABILITY AND MEDICINAL BENEFITS
DOI:
https://doi.org/10.22159/ijpps.2023v15i12.49440Keywords:
Luteolin, Antioxidant, Anticancer, Anti-inflammatory, Flavonoid, Nanoencapsulation, COVID, Antidepressant, Neuroprotector, Anti-diabeticAbstract
Luteolin is a naturally occurring chemical widely found in plants ranging from Bryophyta to Magnoliophyta. It can be obtained from several dietary sources such as carrots, olive oil, celery, spinach, oregano, and, fossils of some organisms such as Celtis and Ulmus dating back 36 to 25 million years. It is synthesized by the Shikimate pathway. The major qualities and therapeutic benefits of luteolin include cytoprotective abilities, Antioxidant, Anti-inflammatory, Anticancer, Antidepressant, Antidiabetic, Antiallergic, Reactive Oxygen Species Scavenging and High radical scavenging. The antioxidant and Reactive Oxygen Species scavenging activity of luteolin aids in treating and curing inflammatory skin processes. It has been proven to act as a therapeutic drug with a wide spectrum of scope in the prevention and treatment of a vast range of malignant and benign cancers, extending from bladder cancer to breast cancer and from oral cancer to glioblastoma, which is achieved by its anticancer, antioxidant properties and cytoprotective abilities. Apart from its anticancer properties, it has a great scope in the restoration from neuropsychiatric disease and high-level fatigue due to Long COVID syndrome-associated brain fog and Chemo fog. The poor solubility and low bioavailability of luteolin limit its use in food and medicine. Synthetic and Natural polymer-based delivery systems have been developed to improve its stability and bioavailability. This review will highlight recent research on its nanoencapsulation and provide more information on luteolin to help readers have a better grasp of the compound's medicinal benefits.
Downloads
References
Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA. Corrigendum to “Luteolin, a flavonoid, as an anticancer agent: a review”. Biomed Pharmacother Biomed Pharmacother. 2019;116:109084. doi: 10.1016/j.biopha.2019.109084, PMID 31178263.
Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. 2000 Nov;55(6):481-504. doi: 10.1016/s0031-9422(00)00235-1, PMID 11130659.
Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther. 2001 May-Jun;90(2-3):157-77. doi: 10.1016/s0163-7258(01)00137-1, PMID 11578656.
Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19-34. doi: 10.1146/annurev.nutr.22.111401.144957, PMID 12055336.
Ou HC, Pandey S, Hung MY, Huang SH, Hsu PT, Day CH. Luteolin: a natural flavonoid enhances the survival of HUVECs against oxidative stress by modulating AMPK/PKC pathway. Am J Chin Med. 2019;47(3):541-57. doi: 10.1142/S0192415X19500289, PMID 30966772.
Cook MT. Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer Dove Med. 2018 Jun 12;10:89-100:S144202. doi: 10.2147/BCTT, PMID 29928143, PMCID PMC6003288.
Wruck CJ, Claussen M, Fuhrmann G, Romer L, Schulz A, Pufe T. Luteolin protects rat PC12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway. J Neural Transm Suppl. 2007;72(72):57-67. doi: 10.1007/978-3-211-73574-9_9, PMID 17982879.
Manzoor MF, Ahmad N, Manzoor A, Kalsoom A. Food based phytochemical luteolin their derivatives, sources and medicinal benefits. Int J Agric Life Sci. 2017;3:11:s12200084. doi: 10.22573/spg.ijals.017.
Muruganathan N, Dhanapal AR, Baskar V, Muthuramalingam P, Selvaraj D, Aara H. Recent updates on source, biosynthesis, and therapeutic potential of natural flavonoid luteolin: a review. Metabolites. 2022 Nov 20;12(11):1145. doi: 10.3390/metabo12111145, PMID 36422285, PMCID PMC9696498.
Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 2008 Nov;74(14):1667-77. doi: 10.1055/s-0028-1088314, PMID 18937165.
Ge L, Xia F, Song Y, Yang K, Qin Z, Li L. Solubility of luteolin in several imidazole-based ionic liquids and extraction from peanut shells using selected ionic liquid as solvent. Sep Purif Technol. 2014 Oct 15;135:223-8. doi: 10.1016/j.seppur.2014.08.022.
Flavonoid and other chemical constituents of fossil Miocene celtis and Ulmus (succor creek flora). Science. 1977 Aug 19;197(4305):765-7. doi: 10.1126/science.197.4305.765, PMID 17790771.
Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010 Jan;3(1):2-20. doi: 10.1093/mp/ssp106, PMID 20035037.
Herrmann KM, Weaver LM. The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:473-503. doi: 10.1146/annurev.arplant.50.1.473, PMID 15012217.
Ferrer JL, Austin MB, Stewart C Jr, Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem. 2008 Mar;46(3):356-70. doi: 10.1016/j.plaphy.2007.12.009, PMID 18272377, PMCID PMC2860624.
Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol. 1999 Aug;6(8):775-84. doi: 10.1038/11553, PMID 10426957.
Jez JM, Bowman ME, Dixon RA, Noel JP. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol. 2000 Sep;7(9):786-91. doi: 10.1038/79025, PMID 10966651.
Croft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci. 1998 Nov 20;854:435-42. doi: 10.1111/j.1749-6632.1998.tb09922.x, PMID 9928450.
Martens S, Mithofer A. Corrigendum to “Flavones and flavone synthases”. Phytochemistry Phytochemistry. 2006;67(5). doi: 10.1016/j.phytochem.2006.01.004.
Nabavi SM, Samec D, Tomczyk M, Milella L, Russo D, Habtemariam S. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnol Adv. 2020 Jan-Feb;38:107316. doi: 10.1016/j.biotechadv.2018.11.005, PMID 30458225.
Yang K, Song Y, Ge L, Su J, Wen Y, Long Y. Measurement and correlation of the solubilities of luteolin and rutin in five imidazole-based ionic liquids. Fluid Ph. 2013 Apr 25;344:27-31. doi: 10.1016/j.fluid.2013.01.026.
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018 Oct 28;225:342-58. doi: 10.1016/j.jep.2018.05.019, PMID 29801717.
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002 Nov-Dec;96(2-3):67-202. doi: 10.1016/s0163-7258(02)00298-x, PMID 12453566.
Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002 Oct;13(10):572-84. doi: 10.1016/s0955-2863(02)00208-5, PMID 12550068.
Lien EJ, Ren S, Bui HH, Wang R. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Biol Med. 1999 Feb;26(3-4):285-94. doi: 10.1016/s0891-5849(98)00190-7, PMID 9895218.
Sander CS, Chang H, Hamm F, Elsner P, Thiele JJ. Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int J Dermatol. 2004 May;43(5):326-35. doi: 10.1111/j.1365-4632.2004.02222.x, PMID 15117361.
Seelinger G, Merfort I, Wolfle U, Schempp CM. Anti-carcinogenic effects of the flavonoid luteolin. Molecules. 2008 Oct 22;13(10):2628-51. doi: 10.3390/molecules13102628, PMID 18946424, PMCID PMC6245397.
Wolfle U, Haarhaus B, Schempp CM. The photoprotective and antioxidative properties of luteolin are synergistically augmented by tocopherol and ubiquinone. Planta Med. 2013 Jul;79(11):963-5. doi: 10.1055/s-0032-1328716. PMID 23839819.
Choi CW, Jung HA, Kang SS, Choi JS. Antioxidant constituents and a new triterpenoid glycoside from flos lonicerae. Arch Pharm Res. 2007 Jan;30(1):1-7. doi: 10.1007/BF02977770, PMID 17328234.
Wu MJ, Huang CL, Lian TW, Kou MC, Wang L. Antioxidant activity of glossogyne tenuifolia. J Agric Food Chem. 2005 Aug 10;53(16):6305-12. doi: 10.1021/jf050511a, PMID 16076111.
Cai Q, Rahn RO, Zhang R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett. 1997 Oct 28;119(1):99-107. doi: 10.1016/s0304-3835(97)00261-9, PMID 18372528.
Horvathova K, Chalupa I, Sebova L, Tothova D, Vachalkova A. Protective effect of quercetin and luteolin in human melanoma HMB-2 cells. Mutat Res. 2005 Jan 3;565(2):105-12. doi: 10.1016/j.mrgentox.2004.08.013, PMID 15661608.
Cheng IF, Breen K. On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex. Biometals. 2000 Mar;13(1):77-83. doi: 10.1023/a:1009229429250, PMID 10831228.
Albarakati AJA, Baty RS, Aljoudi AM, Habotta OA, Elmahallawy EK, Kassab RB. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Mol Biol Rep. 2020 Apr;47(4):2591-603. doi: 10.1007/s11033-020-05346-1, PMID 32144527.
Boeing T, de Souza P, Speca S, Somensi LB, Mariano LNB, Cury BJ. Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties. Br J Pharmacol. 2020 May;177(10):2393-408. doi: 10.1111/bph.14987, PMID 31976547, PMCID PMC7174882.
Kang KA, Piao MJ, Hyun YJ, Zhen AX, Cho SJ, Ahn MJ. Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells. Exp Mol Med. 2019 Apr 15;51(4):1-14. doi: 10.1038/s12276-019-0238-y, PMID 30988303, PMCID PMC6465248.
Yan Y, Jun C, Lu Y, Jiangmei S. Combination of metformin and luteolin synergistically protects carbon tetrachloride-induced hepatotoxicity: mechanism involves antioxidant, anti-inflammatory, antiapoptotic, and Nrf2/HO-1 signaling pathway. BioFactors. 2019 Jul;45(4):598-606. doi: 10.1002/biof.1521, PMID 31336028.
Owumi SE, Lewu DO, Arunsi UO, Oyelere AK. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Hum Exp Toxicol. 2021 Oct;40(10):1656-72. doi: 10.1177/09603271211006171, PMID 33827303.
Johney J, Johney J, Ragunathan R. Evaluation of antioxidant, antimicrobial, anticancer, and wound healing properties of leaf extracts of acanthus ilicifolius L. Int J Curr Pharm Sci. 2023 Jan 15;15(1):22-9. doi: 10.22159/ijcpr.2023v15i1.2066.
Tiwary S, Hussain MS. Functional foods for prevention and treatment of cancer. Asian J Pharm Clin Res. 2021;14(3):4-10. doi: 10.22159/ajpcr.2021.v14i3.40426.
Lotha RO, Sivasubramanian AR. Flavonoids nutraceuticals in prevention and treatment of cancer: a review. Asian J Pharm Clin Res. 2018;11(1):42-7. doi: 10.22159/ajpcr.2017.v11i1.23410.
Sun DW, Zhang HD, Mao L, Mao CF, Chen W, Cui M. Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing Notch signaling and regulating MiRNAs. Cell Physiol Biochem. 2015;37(5):1693-711. doi: 10.1159/000438535, PMID 26545287.
Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci Biotechnol Biochem. 1999 May;63(5):896-9. doi: 10.1271/bbb.63.896, PMID 10380632.
Sato Y, Sasaki N, Saito M, Endo N, Kugawa F, Ueno A. Luteolin attenuates doxorubicin-induced cytotoxicity to MCF-7 human breast cancer cells. Biol Pharm Bull. 2015;38(5):703-9. doi: 10.1248/bpb.b14-00780, PMID 25947916.
Cherng JM, Shieh DE, Chiang W, Chang MY, Chiang LC. Chemopreventive effects of minor dietary constituents in common foods on human cancer cells. Biosci Biotechnol Biochem. 2007 Jun;71(6):1500-4. doi: 10.1271/bbb.70008, PMID 17587681.
Post JF, Varma RS. Growth inhibitory effects of bioflavonoids and related compounds on human leukemic CEM-C1 and CEM-C7 cells. Cancer Lett. 1992 Dec 24;67(2-3):207-13. doi: 10.1016/0304-3835(92)90145-l, PMID 1483269.
Seelinger G, Merfort I, Wölfle U, Schempp CM. Anti-carcinogenic effects of the flavonoid luteolin. Molecules. 2008 Oct 22;13(10):2628-51. doi: 10.3390/molecules13102628, PMID 18946424, PMCID PMC6245397.
Neuhouser ML. Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer. 2004;50(1):1-7. doi: 10.1207/s15327914nc5001_1, PMID 15572291.
Knekt P, Jarvinen R, Seppanen R, Hellovaara M, Teppo L, Pukkala E. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol. 1997 Aug 1;146(3):223-30. doi: 10.1093/oxfordjournals.aje.a009257, PMID 9247006.
Wright ME, Mayne ST, Stolzenberg-Solomon RZ, Li Z, Pietinen P, Taylor PR. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am J Epidemiol. 2004 Jul 1;160(1):68-76. doi: 10.1093/aje/kwh173, PMID 15229119.
Cook MT, Liang Y, Besch Williford C, Goyette S, Mafuvadze B, Hyder SM. Luteolin inhibits progestin-dependent angiogenesis, stem cell-like characteristics, and growth of human breast cancer xenografts. Springerplus. 2015 Aug 22;4:444. doi: 10.1186/s40064-015-1242-x, PMID 26312209, PMCID PMC4546074.
Cook MT. Mechanism of metastasis suppression by luteolin in breast cancer. Breast cancer (dove Med press). 2018 Jun 12;10:89-100:S144202. doi: 10.2147/BCTT, PMID 29928143, PMCID PMC6003288.
Sharma A, Chabloz S, Lapides RA, Roider E, Ewald CY. Potential synergistic supplementation of NAD+promoting compounds as a strategy for increasing healthspan. Nutrients. 2023 Jan 14;15(2):445. doi: 10.3390/nu15020445, PMID 36678315, PMCID PMC9861325.
Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA. Corrigendum to “Luteolin, a flavonoid, as an anticancer agent: a review”. Biomed Pharmacother Biomed Pharmacother. 2019;116:109084. doi: 10.1016/j.biopha.2019.109084, PMID 31178263.
Wang S, Cao M, Xu S, Shi J, Mao X, Yao X. Luteolin alters macrophage polarization to inhibit inflammation. Inflammation. 2020 Feb;43(1):95-108. doi: 10.1007/s10753-019-01099-7, PMID 31673976.
Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020 Sep 8;10(1):14790. doi: 10.1038/s41598-020-71908-9, PMID 32901098, PMCID PMC7478957.
Zhou XR, Ru XC, Xiao C, Pan J, Lou YY, Tang LH. Sestrin2 is involved in the Nrf2-regulated antioxidative signaling pathway in luteolin-induced prevention of the diabetic rat heart from ischemia/reperfusion injury. Food Funct. 2021 Apr 21;12(8):3562-71. doi: 10.1039/d0fo02942d, PMID 33900303.
Liu Y, Tian X, Gou L, Sun L, Ling X, Yin X. Luteolin attenuates diabetes-associated cognitive decline in rats. Brain Res Bull. 2013 May;94:23-9. doi: 10.1016/j.brainresbull.2013.02.001, PMID 23415807.
Brody JS, Spira A. State of the art. Chronic obstructive pulmonary disease, inflammation, and lung cancer. Proc Am Thorac Soc. 2006 Aug;3(6):535-7. doi: 10.1513/pats.200603-089MS, PMID 16921139.
Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007 Dec 1;121(11):2373-80. doi: 10.1002/ijc.23173, PMID 17893866.
Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006 Feb 24;124(4):823-35. doi: 10.1016/j.cell.2006.02.016, PMID 16497591.
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018 Oct 28;225:342-58. doi: 10.1016/j.jep.2018.05.019, PMID 29801717.
Brody JS, Spira A. State of the art. Chronic obstructive pulmonary disease, inflammation, and lung cancer. Proc Am Thorac Soc. 2006 Aug;3(6):535-7. doi: 10.1513/pats.200603-089MS, PMID 16921139.
Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007 Dec 1;121(11):2373-80. doi: 10.1002/ijc.23173, PMID 17893866.
Durga M, Nathiya S, Devasena T. Multifarious actions of dietary flavonoids-implications in cancer and cataract. Int J Pharm Biol Sci. 2014;5(2):404-6.
Xagorari A, Papapetropoulos A, Mauromatis A, Economou M, Fotsis T, Roussos C. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther. 2001 Jan;296(1):181-7, PMID 11123379.
Chen CC, Chow MP, Huang WC, Lin YC, Chang YJ. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships. Mol Pharmacol. 2004 Sep;66(3):683-93. doi: 10.1124/mol.66.3, PMID 15322261.
Kumazawa Y, Kawaguchi K, Takimoto H. Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor alpha. Curr Pharm Des. 2006;12(32):4271-9. doi: 10.2174/138161206778743565, PMID 17100629.
Ding X, Zheng L, Yang B, Wang X, Ying Y. Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3-mediated inflammatory response. Drug Des Devel Ther. 2019;13:3899-911. doi: 10.2147/DDDT.S207185, PMID 31819365.
Crupi R, Paterniti I, Ahmad A, Campolo M, Esposito E, Cuzzocrea S. Effects of palmitoylethanolamide and luteolin in an animal model of anxiety/depression. CNS Neurol Disord Drug Targets. 2013 Nov;12(7):989-1001. doi: 10.2174/18715273113129990084, PMID 23844686.
Siracusa R, Paterniti I, Impellizzeri D, Cordaro M, Crupi R, Navarra M. The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinson’s disease model. CNS Neurol Disord Drug Targets. 2015;14(10):1350-65. doi: 10.2174/1871527314666150821102823, PMID 26295827.
Uwishema O, Mahmoud A, Sun J, Correia IFS, Bejjani N, Alwan M. Is Alzheimer’s disease an infectious neurological disease? A review of the literature. Brain Behav. 2022 Aug;12(8):e2728. doi: 10.1002/brb3.2728, PMID 35879909, PMCID PMC9392514.
Ali F, Rahul, Jyoti S, Naz F, Ashafaq M, Shahid M. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci Lett. 2019;692:90-9. doi: 10.1016/j.neulet.2018.10.053, PMID 30420334.
Kou JJ, Shi JZ, He YY, Hao JJ, Zhang HY, Luo DM. Luteolin alleviates cognitive impairment in Alzheimer’s disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation. Acta Pharmacol Sin. 2022 Apr;43(4):840-9. doi: 10.1038/s41401-021-00702-8, PMID 34267346, PMCID PMC8975883.
Wang HR, Pei SY, Fan DX, Liu YH, Pan XF, Song FX. Luteolin protects pheochromocytoma (PC-12) cells against Aβ25-35-induced cell apoptosis through the ER/ERK/MAPK signalling pathway. Evid Based Complement Alternat Med. 2020 Nov 30;2020:2861978. doi: 10.1155/2020/2861978, PMID 33335556, PMCID PMC7723489.
Park S, Kim DS, Kang S, Kim HJ. The combination of luteolin and l-theanine improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-β-infused rats. Nutr Res. 2018 Dec;60:116-31. doi: 10.1016/j.nutres.2018.09.010, PMID 30527255.
Zhao G, Yao Yue C, Qin GW, Guo LH. Luteolin from purple perilla mitigates ROS insult particularly in primary neurons. Neurobiol Aging. 2012 Jan;33(1):176-86. doi: 10.1016/j.neurobiolaging.2010.02.013, PMID 20382451.
Qin L, Chen Z, Yang L, Shi H, Wu H, Zhang B. Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice. Toxicology. 2019 Oct 1;426:152256. doi: 10.1016/j.tox.2019.152256, PMID 31381935.
Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022 Feb;23(2):120-33. doi: 10.1038/s41576-021-00414-z. PMID 34556834, PMCID PMC8459824.
Zhang Z, Wang J, Lin Y, Chen J, Liu J, Zhang X. Nutritional activities of luteolin in obesity and associated metabolic diseases: an eye on adipose tissues. Crit Rev Food Sci Nutr. 2022 Oct 27:1-15. doi: 10.1080/10408398.2022.2138257, PMID 36300856.
Kwon EY, Choi MS. Luteolin targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice. Nutrients. 2018 Oct 3;10(10):1415. doi: 10.3390/nu10101415, PMID 30282902, PMCID PMC6213163.
Park HS, Lee K, Kim SH, Hong MJ, Jeong NJ, Kim MS. Luteolin improves hypercholesterolemia and glucose intolerance through LXRα-dependent pathway in diet-induced obese mice. J Food Biochem. 2020 Sep;44(9):e13358. doi: 10.1111/jfbc.13358, PMID 32598492.
Ando C, Takahashi N, Hirai S, Nishimura K, Lin S, Uemura T. Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett. 2009 Nov 19;583(22):3649-54. doi: 10.1016/j.febslet.2009.10.045, PMID 19854181.
Ike S, Onyema C. Cardiovascular diseases in Nigeria: what has happened in the past 20 years? Nig J Cardiol. 2020;17(1). doi: 10.4103/njc.njc_33_19.
Mendis S, Puska P, Norrving B, World Health Organization. Global atlas on cardiovascular disease prevention and control. World Health Organization; 2011.
Alissa EM, Ferns GA. Dietary fruits and vegetables and cardiovascular diseases risk. Crit Rev Food Sci Nutr. 2017 Jun 13;57(9):1950-62. doi: 10.1080/10408398.2015.1040487, PMID 26192884.
Liu D, Luo H, Qiao C. SHP-1/STAT3 interaction is related to luteolin-induced myocardial ischemia protection. Inflammation. 2022 Feb;45(1):88-99. doi: 10.1007/s10753-021-01530-y, PMID 34460026, PMCID PMC8403691.
Hu W, Xu T, Wu P, Pan D, Chen J, Chen J. Luteolin improves cardiac dysfunction in heart failure rats by regulating sarcoplasmic reticulum Ca2+-ATPase 2a. Sci Rep. 2017 Jan 23;7:41017. doi: 10.1038/srep41017, PMID 28112209, PMCID PMC5253630.
Fang F, Li D, Pan H, Chen D, Qi L, Zhang R. Luteolin inhibits apoptosis and improves cardiomyocyte contractile function through the PI3K/Akt pathway in simulated ischemia/reperfusion. Pharmacology. 2011;88(3-4):149-58. doi: 10.1159/000330068, PMID 21934351.
Zhu S, Xu T, Luo Y, Zhang Y, Xuan H, Ma Y. Luteolin enhances sarcoplasmic reticulum Ca2+-ATPase activity through p38 MAPK signaling thus improving rat cardiac function after ischemia/reperfusion. Cell Physiol Biochem. 2017;41(3):999-1010. doi: 10.1159/000460837, PMID 28222421.
Xiao C, Xia ML, Wang J, Zhou XR, Lou YY, Tang LH. Luteolin attenuates cardiac ischemia/reperfusion injury in diabetic rats by modulating Nrf2 antioxidative function. Oxid Med Cell Longev. 2019 Apr 8;2019:2719252. doi: 10.1155/2019/2719252, PMID 31089405, PMCID PMC6476158.
Luo Y, Shang P, Li D. Luteolin: a flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front Pharmacol. 2017 Oct 6;8:692. doi: 10.3389/fphar.2017.00692, PMID 29056912, PMCID PMC5635727.
Theoharides TC, Cholevas C, Polyzoidis K, Politis A. Long-COVID syndrome-associated brain fog and chemofog: luteolin to the rescue. BioFactors. 2021 Mar;47(2):232-41. doi: 10.1002/biof.1726, PMID 33847020, PMCID PMC8250989.
Galeotti C, Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. 2020 Aug;16(8):413-4. doi: 10.1038/s41584-020-0448-7, PMID 32499548, PMCID PMC7271827.
Canna SW, Cron RQ. Highways to hell: mechanism-based management of cytokine storm syndromes. J Allergy Clin Immunol. 2020 Nov;146(5):949-59. doi: 10.1016/j.jaci.2020.09.016, PMID 33007328, PMCID PMC7522622.
Baig AM. Chronic COVID syndrome: need for an appropriate medical terminology for long-COVID and COVID long-haulers. J Med Virol. 2021 May;93(5):2555-6. doi: 10.1002/jmv.26624, PMID 33095459.
Theoharides TC, Conti P. COVID-19 and multisystem inflammatory syndrome, or is it mast cell activation syndrome? J Biol Regul Homeost Agents. 2020 Sep-Oct;34(5):1633-6. doi: 10.23812/20-EDIT3, PMID 33023287.
Hatziagelaki E, Adamaki M, Tsilioni I, Dimitriadis G, Theoharides TC. Myalgic encephalomyelitis/chronic fatigue syndrome-metabolic disease or disturbed homeostasis due to focal inflammation in the hypothalamus? J Pharmacol Exp Ther. 2018 Oct;367(1):155-67. doi: 10.1124/jpet.118.250845, PMID 30076265.
Natelson BH. Myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia: definitions, similarities, and differences. Clin Ther. 2019 Apr;41(4):612-8. doi: 10.1016/j.clinthera.2018.12.016, PMID 30795933, PMCID PMC6589349.
Akin C, Valent P, Metcalfe DD. Mast cell activation syndrome: proposed diagnostic criteria. J Allergy Clin Immunol. 2010 Dec;126(6):1099-104.e4. doi: 10.1016/j.jaci.2010.08.035, PMID 21035176, PMCID PMC3753019.
Theoharides TC, Tsilioni I, Ren H. Recent advances in our understanding of mast cell activation-or should it be mast cell mediator disorders? Expert Rev Clin Immunol. 2019 Jun;15(6):639-56. doi: 10.1080/1744666X.2019.1596800, PMID 30884251, PMCID PMC7003574.
Theoharides TC, Valent P, Akin C. Mast Cells, Mastocytosis, and related disorders. N Engl J Med. 2015 Jul 9;373(2):163-72. doi: 10.1056/NEJMra1409760, PMID 26154789.
Liang W, Guan W, Chen R, Wang W, Li J, Xu K. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020 Mar;21(3):335-7. doi: 10.1016/S1470-2045(20)30096-6, PMID 32066541, PMCID PMC7159000.
Raffa RB, Duong PV, Finney J, Garber DA, Lam LM, Mathew SS. Is ’chemo-fog’/’chemo-brain’ caused by cancer chemotherapy? J Clin Pharm Ther. 2006 Apr;31(2):129-38. doi: 10.1111/j.1365-2710.2006.00726.x, PMID 16635046.
Raffa RB. A proposed mechanism for chemotherapy-related cognitive impairment (”chemo-fog”). J Clin Pharm Ther. 2011 Jun;36(3):257-9. doi: 10.1111/j.1365-2710.2010.01188.x, PMID 21545608, PMCID PMC3249621.
Mitchell T, Turton P. 'Chemobrain’: concentration and memory effects in people receiving chemotherapy-a descriptive phenomenological study. Eur J Cancer Care (Engl). 2011 Jul;20(4):539-48. doi: 10.1111/j.1365-2354.2011.01244.x, PMID 21443746.
Plos One Staff. Correction: chemobrain experienced by breast cancer survivors: a meta-ethnography study investigating research and care implications. Plos One. 2015;10(2):e0117740. doi: 10.1371/journal.pone.0117740, PMID 25647507.
Baer W. Chemobrain: an opportunity in cancer survivorship to enhance patient wellness. J Oncol Pract. 2017 Dec;13(12):794-6. doi: 10.1200/JOP.2017.027987, PMID 29232541.
Gutmann DH. Clearing the fog surrounding chemobrain. Cell. 2019 Jan 10;176(1-2):2-4. doi: 10.1016/j.cell.2018.12.027, PMID 30633904.
Henderson FM, Cross AJ, Baraniak AR. ”A new normal with chemobrain”: experiences of the impact of chemotherapy-related cognitive deficits in long-term breast cancer survivors. Health Psychol Open. 2019 Mar 5;6(1):2055102919832234. doi: 10.1177/2055102919832234, PMID 30873289, PMCID PMC6405778.
Eide S, Feng ZP. Doxorubicin chemotherapy-induced ’chemo-brain’: meta-analysis. Eur J Pharmacol. 2020 Aug 15;881:173078. doi: 10.1016/j.ejphar.2020.173078, PMID 32505665.
El-Agamy SE, Abdel Aziz AK, Esmat A, Azab SS. Chemotherapy and cognition: comprehensive review on doxorubicin-induced chemobrain. Cancer Chemother Pharmacol. 2019 Jul;84(1):1-14. doi: 10.1007/s00280-019-03827-0, PMID 30955080.
Ongnok B, Chattipakorn N, Chattipakorn SC. Doxorubicin and cisplatin induced cognitive impairment: the possible mechanisms and interventions. Exp Neurol. 2020 Feb;324:113118. doi: 10.1016/j.expneurol.2019.113118, PMID 31756316.
Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell. 2019 Jan 10;176(1-2):43-55.e13. doi: 10.1016/j.cell.2018.10.049, PMID 30528430, PMCID PMC6329664.
Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain. 2007 Jul;130(1-2):166-76. doi: 10.1016/j.pain.2007.03.012, PMID 17459586, PMCID PMC2045157.
Calvi E, Marchetti M, Santagata F, Luppi C, Coppo E, Massaia M. Similar neurocognitive patterns in patients treated with lenalidomide: chemobrain effect? Neurocase. 2019 Dec;25(6):259-62. doi: 10.1080/13554794.2019.1666876, PMID 31522586.
Lee S, Lee HJ, Kang H, Kim EH, Lim YC, Park H. Trastuzumab induced chemobrain, atorvastatin rescued chemobrain with enhanced anticancer effect and without hair loss-side effect. J Clin Med. 2019 Feb 11;8(2):234. doi: 10.3390/jcm8020234, PMID 30754707, PMCID PMC6406319.
Theoharides TC. Stress, inflammation, and autoimmunity: the 3 modern Erinyes. Clin Ther. 2020 May;42(5):742-4. doi: 10.1016/j.clinthera.2020.04.002. PMID 32354496, PMCID PMC7165270.
Theoharides TC. The impact of psychological stress on mast cells. Ann Allergy Asthma Immunol. 2020 Oct;125(4):388-92. doi: 10.1016/j.anai.2020.07.007, PMID 32687989.
Steenblock C, Todorov V, Kanczkowski W, Eisenhofer G, Schedl A, Wong ML. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol Psychiatry. 2020 Aug;25(8):1611-7. doi: 10.1038/s41380-020-0758-9, PMID 32382135, PMCID PMC7204611.
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607-13. doi: 10.1016/j.jinf.2020.03.037, PMID 32283152.
Iannaccone G, Scacciavillani R, Del Buono MG, Camilli M, Ronco C, Lavie CJ. Weathering the cytokine storm in COVID-19: therapeutic implications. Cardiorenal Med. 2020;10(5):277-87. doi: 10.1159/000509483, PMID 32599589, PMCID PMC7360507.
Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020 Jul;19(7):102567. doi: 10.1016/j.autrev.2020.102567, PMID 32376392, PMCID PMC7196557.
Ronconi G, Tete G, Kritas SK, Gallenga CE, Al Caraffa RR, Ross R. SARS-CoV-2, which induces COVID-19, causes Kawasaki-like disease in children: role of pro-inflammatory and anti-inflammatory cytokines. J Biol Regul Homeost Agents. 2020 May-Jun;34(3):767-73. doi: 10.23812/editorial-ronconi-E-59, PMID 32476380.
Kazama I. Stabilizing mast cells by commonly used drugs: a novel therapeutic target to relieve post-COVID syndrome? Drug Discov Ther. 2020 Nov 4;14(5):259-61. doi: 10.5582/ddt.2020.03095, PMID 33116043.
Theoharides TC. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. BioFactors. 2020 May;46(3):306-8. doi: 10.1002/biof.1633, PMID 32339387, PMCID PMC7267424.
Harwood M, Danielewska Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007 Nov;45(11):2179-205. doi: 10.1016/j.fct.2007.05.015. PMID 17698276.
Okamoto T. Safety of quercetin for clinical application (Review). Int J Mol Med. 2005 Aug;16(2):275-8. PMID 16012761.
Taliou A, Zintzaras E, Lykouras L, Francis K. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin Ther. 2013 May;35(5):592-602. doi: 10.1016/j.clinthera.2013.04.006, PMID 23688534.
Theoharides TC, Conti P, Economu M. Brain inflammation, neuropsychiatric disorders, and immunoendocrine effects of luteolin. J Clin Psychopharmacol. 2014 Apr;34(2):187-9. doi: 10.1097/JCP.0000000000000084, PMID 24525647.
Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schafer B, Hirsch Ernst KI. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018 Jan;62(1). doi: 10.1002/mnfr.201700447, PMID 29127724.
Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, Papadopoulou N. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol. 2005 Aug;145(7):934-44. doi: 10.1038/sj.bjp.0706246, PMID 15912140, PMCID PMC1576204.
Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 2008 Nov;74(14):1667-77. doi: 10.1055/s-0028-1088314, PMID 18937165.
Calis Z, Mogulkoc R, Baltaci AK. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev Med Chem. 2020;20(15):1475-88. doi: 10.2174/1389557519666190617150051, PMID 31288717.
Jager AK, Saaby L. Flavonoids and the CNS. Molecules. 2011 Feb 10;16(2):1471-85. doi: 10.3390/molecules16021471, PMID 21311414, PMCID PMC6259921.
Leyva Lopez N, Gutierrez Grijalva EP, Ambriz Perez DL, Heredia JB. Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. Int J Mol Sci. 2016 Jun 9;17(6):921. doi: 10.3390/ijms17060921, PMID 27294919, PMCID PMC4926454.
Calis Z, Mogulkoc R, Baltaci AK. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev Med Chem. 2020;20(15):1475-88. doi: 10.2174/1389557519666190617150051, PMID 31288717.
Devi SA, Chamoli A. Polyphenols as an effective therapeutic intervention against cognitive decline during normal and pathological brain aging. Adv Exp Med Biol. 2020;1260:159-74. doi: 10.1007/978-3-030-42667-5_7, PMID 32304034.
Del Rio JA, Fuster MD, Gomez P, Porras I, Garcia Lidon A, Ortuno A. Citrus limon: a source of flavonoids of pharmaceutical interest. Food Chem. 2004 Feb;84(3):457-61. doi: 10.1016/S0308-8146(03)00272-3.
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002 Nov-Dec;96(2-3):67-202. doi: 10.1016/s0163-7258(02)00298-x, PMID 12453566.
Lopez Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009 Jan;9(1):31-59. doi: 10.2174/138955709787001712, PMID 19149659.
Choi CW, Jung HA, Kang SS, Choi JS. Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae. Arch Pharm Res. 2007 Jan;30(1):1-7. doi: 10.1007/BF02977770, PMID 17328234.
Miyazawa M, Hisama M. Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci Biotechnol Biochem. 2003 Oct;67(10):2091-9. doi: 10.1271/bbb.67.2091, PMID 14586095.
Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008 Nov;8(7):634-46. doi: 10.2174/156800908786241050, PMID 18991571, PMCID PMC2615542.
Kumar SS, Shanmugasundaram P, Komala M, Bhargavi B, Padmavathy J. Nanoparticle formulation of bioflavonoids for enhanced anti-cancer activity. Int J App Pharm. 2020;12(5):29-35. doi: 10.22159/ijap.2020v12i5.38425.
Fessi HP, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics. 1989 Oct 1;55(1):R1-4. doi: 10.1016/0378-5173(89)90281-0.
Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8-21. doi: 10.1016/j.nano.2005.12.003, PMID 17292111.
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010 Jan 1;75(1):1-18. doi: 10.1016/j.colsurfb.2009.09.001, PMID 19782542.
Zanwar AA, Badole SL, Shende PS, Hegde MV, Bodhankar SL. Antioxidant role of catechin in health and disease. Inpolyphenols Hum Health Dis. 2014 Jan 1:267-71.
Balakrishnan BB, Krishnasamy K. Evaluation of free radical screening and antioxidant potential of moringa concanensis nimmo-a medicinal plant used in Indian traditional medication system. Int J Pharm Pharm Sci. 2018;10(7):91-7. doi: 10.22159/ijpps.2018v10i7.26403.
Published
How to Cite
Issue
Section
Copyright (c) 2023 RAKSHA B., VAISHNAVI M., DURGA M., BRINDHA BANU B., DEEPIKAA R.
This work is licensed under a Creative Commons Attribution 4.0 International License.