A REVIEW ON THE CHEMICAL-INDUCED EXPERIMENTAL MODEL OF CARDIOTOXICITY

Authors

  • MONISHAA RAI Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida-201313, India https://orcid.org/0009-0008-8911-5723
  • AKSHIT SINHA Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida-201313, India
  • SUPRIYA ROY Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida-201313, India https://orcid.org/0000-0002-8676-5113

DOI:

https://doi.org/10.22159/ijpps.2024v16i7.51028

Keywords:

Cardiomyopathy, Chemotherapeutics, Doxorubicin, Cytotoxic agents, Cisplatin

Abstract

Drug-induced cardiotoxicity is a major concern during drug development, prompting the need for reliable experimental models to thoroughly assess potential cardioprotective drugs. The review delves into the intricacies of various models for drug-induced cardiotoxicity in experimental animals, with a specific focus on streptozotocin, isoprenaline, and antineoplastic drugs like cisplatin, doxorubicin, and 5-fluorouracil in rats and mice. Streptozotocin-induced cardiotoxicity is characterized by oxidative stress, inflammation, and mitochondrial dysfunction, resulting in myocardial damage and impaired cardiac function. Preclinical studies employing streptozotocin-induced cardiotoxicity models have revealed crucial pathways related to diabetic cardiomyopathy, aiding the evaluation of potential cardioprotective interventions. Isoprenaline, a beta-adrenergic agonist, is known for inducing acute myocardial injury resembling cardiac ischemia and heart failure in animals. Its mechanism involves overstimulation of beta-adrenergic receptors, calcium overload, oxidative stress, and apoptosis. Isoprenaline-induced models have offered insights into acute myocardial injury pathophysiology and facilitated the screening of cardioprotective agents against Myocardial Infarction (MI) and injury. Antineoplastic drugs, such as cisplatin, doxorubicin, and 5-fluorouracil, are linked to significant cardiotoxic effects, including cardiomyopathy and heart failure. Animal models have revealed dose-dependent cardiomyopathy, shedding light on underlying mechanisms like oxidative stress, Deoxyribonucleic Acid (DNA) damage, and mitochondrial dysfunction. The article aims to consolidate the current understanding of the pathophysiology and mechanisms behind drug-induced cardiac damage. Additionally, it underscores the importance of using animal models in preclinical evaluations to assess drug safety and efficacy and to develop potential cardioprotective therapies.

Downloads

Download data is not yet available.

References

Mladenka P, Applova L, Patocka J, Costa VM, Remiao F, Pourova J. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev. 2018 Jul;38(4):1332-403. doi: 10.1002/med.21476, PMID 29315692.

Georgiadis N, Tsarouhas K, Rezaee R, Nepka H, Kass GE, Dorne JC. What is considered cardiotoxicity of anthracyclines in animal studies. Oncol Rep. 2020 Sep;44(3):798-818. doi: 10.3892/or.2020.7688, PMID 32705236.

Antoniou CK, Dilaveris P, Manolakou P, Galanakos S, Magkas N, Gatzoulis K. QT prolongation and malignant arrhythmia: how serious a problem? Eur Cardiol. 2017 Dec;12(2):112-20. doi: 10.15420/ecr.2017:16:1, PMID 30416582.

Boerma M, Hauer Jensen M. Preclinical research into basic mechanisms of radiation-induced heart disease. Cardiol Res Pract. 2010;2011:858262. doi: 10.4061/2011/858262, PMID 20953374.

Hoffman JW, Gilbert TB, Poston RS, Silldorff EP. Myocardial reperfusion injury: etiology, mechanisms, and therapies. J Extra Corpor Technol. 2004 Dec;36(4):391-411. doi: 10.1051/ject/2004364391, PMID 15679285.

Force T, Kolaja KL. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov. 2011 Feb;10(2):111-26. doi: 10.1038/nrd3252, PMID 21283106.

Waldman AD, Fritz JM, lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020 Nov;20(11):651-68. doi: 10.1038/s41577-020-0306-5, PMID 32433532.

Lenneman CG, Sawyer DB. Cardio-oncology: an update on cardiotoxicity of cancer-related treatment. Circ Res. 2016 Mar 18;118(6):1008-20. doi: 10.1161/CIRCRESAHA.115.303633, PMID 26987914.

Li DL, Hill JA. Cardiomyocyte autophagy and cancer chemotherapy. J Mol Cell Cardiol. 2014 Jun;71:54-61. doi: 10.1016/j.yjmcc.2013.11.007, PMID 24239608.

Sheppard RJ, Berger J, Sebag IA. Cardiotoxicity of cancer therapeutics: current issues in screening, prevention, and therapy. Front Pharmacol. 2013;4:19. doi: 10.3389/fphar.2013.00019, PMID 23487556.

Kaneko M, Matsumoto Y, Hayashi H, Kobayashi A, Yamazaki N. Oxygen free radicals and calcium homeostasis in the heart. Mol Cell Biochem. 1994 Jun 15;135(1):99-108. doi: 10.1007/BF00925965, PMID 7816061.

Cardinale D, Sandri MT. Role of biomarkers in chemotherapy-induced cardiotoxicity. Prog Cardiovasc Dis. 2010 Sep-Oct;53(2):121-9. doi: 10.1016/j.pcad.2010.04.002, PMID 20728699.

Tapio S. Pathology and biology of radiation-induced cardiac disease. J Radiat Res. 2016 Sep;57(5):439-48. doi: 10.1093/jrr/rrw064, PMID 27422929.

Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003 Jun 1;97(11):2869-79. doi: 10.1002/cncr.11407, PMID 12767102.

Yeh ET, Tong AT, lenihan DJ, Yusuf SW, Swafford J, Champion C. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004 Jun 29;109(25):3122-31. doi: 10.1161/01.CIR.0000133187.74800.B9, PMID 15226229.

Geisberg CA, Sawyer DB. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr Hypertens Rep. 2010 Dec;12(6):404-10. doi: 10.1007/s11906-010-0146-y, PMID 20842465.

Nishi M, Wang PY, Hwang PM. Cardiotoxicity of cancer treatments: focus on anthracycline cardiomyopathy. Arterioscler Thromb Vasc Biol. 2021 Nov;41(11):2648-60. doi: 10.1161/ATVBAHA.121.316697, PMID 34587760.

Barry E, Alvarez JA, Scully RE, Miller TL, lipshultz SE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007 Jun;8(8):1039-58. doi: 10.1517/14656566.8.8.1039, PMID 17516870.

Jones RL, Ewer MS. Cardiac and cardiovascular toxicity of nonanthracycline anticancer drugs. Expert Rev Anticancer Ther. 2006 Sep;6(9):1249-69. doi: 10.1586/14737140.6.9.1249, PMID 17020459.

Wang L, Ma W, Markovich R, Chen JW, Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res. 1998 Sep 7;83(5):516-22. doi: 10.1161/01.res.83.5.516, PMID 9734474.

Goffart S, von Kleist Retzow JC, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res. 2004 Nov 1;64(2):198-207. doi: 10.1016/j.cardiores.2004.06.030, PMID 15485678.

lipshultz SE, Rifai N, Sallan SE, lipsitz SR, Dalton V, Sacks DB. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation. 1997 Oct 21;96(8):2641-8. doi: 10.1161/01.cir.96.8.2641, PMID 9355905.

Chen W, liu I, Tomiyasu H, lee J, Cheng C, liao AT, liu B, liu C, lin C. Imatinib enhances the anti-tumour effect of DOX in canine B-cell lymphoma cell line. Vet J. 2019 Dec;254:105398.

Piska K, Koczurkiewicz P, Bucki A, Wojcik Pszczoła K, Kołaczkowski M, Pękala E. Metabolic carbonyl reduction of anthracyclines-role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents. Invest New Drugs. 2017 Jun;35(3):375-85. doi: 10.1007/s10637-017-0443-2, PMID 28283780.

Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004 Jun;56(2):185-229. doi: 10.1124/pr.56.2.6, PMID 15169927.

Simůnek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Geršl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009 Jan-Feb;61(1):154-71. doi: 10.1016/s1734-1140(09)70018-0, PMID 19307704.

Zhang S, liu X, Bawa Khalfe T, Lu LS, Lyu YL, Liu LF. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012 Nov;18(11):1639-42. doi: 10.1038/nm.2919, PMID 23104132.

Renu K, VGA, PBTP, Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy-an update. Eur J Pharmacol. 2018;818:241-53. doi: 10.1016/j.ejphar.2017.10.043, PMID 29074412.

Kaul S, Diamond GA. Making sense of noninferiority: a clinical and statistical perspective on its application to cardiovascular clinical trials. Prog Cardiovasc Dis. 2007 Jan-Feb;49(4):284-99. doi: 10.1016/j.pcad.2006.10.001, PMID 17185116.

Mettler FP, Young DM, Ward JM. Adriamycin-induced cardiotoxicity (cardiomyopathy and cognitive heart failure) in rats. Cancer Res. 1997 Aug;8(1):2705-13.

Desai VG, lee T, Delongchamp RR, Moland CL, Branham WS, Fuscoe JC, leakey JE. Development of mitochondria-specific mouse oligonucleotide microarray and validation of data by real-time PCR. Mitochondrion. 2007 Sep 1;7(5):322-9.

Desai VG, Lee T, Delongchamp RR, Leakey JE, Lewis SM, Lee F. Nucleoside reverse transcriptase inhibitors (NRTIs)-induced expression profile of mitochondria-related genes in the mouse liver. Mitochondrion. 2008 Mar;8(2):181-95. doi: 10.1016/j.mito.2008.01.002, PMID 18313992.

Astra LI, Hammond R, Tarakji K, Stephenson LW. Doxorubicin-induced canine CHF: advantages and disadvantages. J Card Surg. 2003;18(4):301-6. doi: 10.1046/j.1540-8191.2003.02032.x, PMID 12869174.

Berthiaume JM, Wallace KB. Persistent alterations to the gene expression profile of the heart subsequent to chronic doxorubicin treatment. Cardiovasc Toxicol. 2007 Sep;7(3):178-91. doi: 10.1007/s12012-007-0026-0, PMID 17901561.

Molyneux G, Andrews M, Sones W, York M, Barnett A, Quirk E. Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration. Cell Biol Toxicol. 2011 Feb;27(1):13-40. doi: 10.1007/s10565-010-9167-1, PMID 20589437.

Bertinchant JP, Polge A, Juan JM, Oliva Lauraire MC, Giuliani I, Marty Double C. Evaluation of cardiac troponin I and T levels as markers of myocardial damage in doxorubicin-induced cardiomyopathy rats, and their relationship with echocardiographic and histological findings. Clin Chim Acta. 2003 Mar 1;329(1-2):39-51. doi: 10.1016/s0009-8981(03)00013-5, PMID 12589964.

Bjelogrlic SK, Radic J, Radulovic S, Jokanovic M, Jovic V. Effects of dexrazoxane and amifostine on evolution of doxorubicin cardiomyopathy in vivo. Exp Biol Med (Maywood). 2007 Dec;232(11):1414-24. doi: 10.3181/0705-RM-138, PMID 18040065.

Shuai Y, Guo J, Dong Y, Zhong W, Xiao P, Zhou T. Global gene expression profiles of MT knockout and wild-type mice in the condition of doxorubicin-induced cardiomyopathy. Toxicol Lett. 2011 Jan 15;200(1-2):77-87. doi: 10.1016/j.toxlet.2010.10.017, PMID 21040762.

van Asperen J, van Tellingen O, Tijssen F, Schinkel AH, Beijnen JH. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br J Cancer. 1999 Jan;79(1):108-13. doi: 10.1038/sj.bjc.6690019, PMID 10408701.

lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004 Jul 8;351(2):145-53. doi: 10.1056/NEJMoa035153, PMID 15247354.

Thompson KL, Rosenzweig BA, Zhang J, Knapton AD, Honchel R, lipshultz SE. Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol. 2010 Jul;66(2):303-14. doi: 10.1007/s00280-009-1164-9, PMID 19915844.

lui RC, laregina MC, Herbold DR, Johnson FE. Testicular cytotoxicity of intravenous doxorubicin in rats. J Urol. 1986 Oct;136(4):940-3. doi: 10.1016/s0022-5347(17)45136-6, PMID 3761466.

Zhao X, Zhang J, Tong N, Liao X, Wang E, Li Z. Berberine attenuates doxorubicin-induced cardiotoxicity in mice. J Int Med Res. 2011;39(5):1720-7. doi: 10.1177/147323001103900514, PMID 22117972.

Dulf PL, Mocan M, Coada CA, Dulf DV, Moldovan R, Baldea I. Doxorubicin-induced acute cardiotoxicity is associated with increased oxidative stress, autophagy, and inflammation in a murine model. Naunyn Schmiedebergs Arch Pharmacol. 2023 Jun;396(6):1105-15. doi: 10.1007/s00210-023-02382-z, PMID 36645429.

Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, Gang W. Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother. 2020 Feb;122:109547. doi: 10.1016/j.biopha.2019.109547, PMID 31918264.

Desai VG, Herman EH, Moland CL, Branham WS, lewis SM, Davis KJ, George NI, Lee T, Kerr S, Fuscoe JC. Development of DOX-induced chronic cardiotoxicity in the B6C3F1 mouse model. Toxicol Appl Pharmacol. 2013 Jan 1;266(1):109-21.

Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. 2006 Mar 17;98(5):596-605. doi: 10.1161/01.RES.0000207406.94146.c2, PMID 16543510.

Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999 Sep 7;100(10):1134-46. doi: 10.1161/01.cir.100.10.1134, PMID 10477542.

Howard BV, Wylie Rosett J. Sugar and cardiovascular disease: a statement for healthcare professionals from the committee on nutrition of the council on nutrition, physical activity, and metabolism of the American Heart Association. Circulation. 2002 Jul 23;106(4):523-7. doi: 10.1161/01.cir.0000019552.77778.04, PMID 12135957.

Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000 May 16;101(19):2271-6.

Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C–mediated caspase-3 activation pathway. Diabetes. 2002 Jun;51(6):1938-48. doi: 10.2337/diabetes.51.6.1938, PMID 12031984.

Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen Tervaert JW. Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research committee of the heart failure association of the european society of cardiology. Eur J Heart Fail. 2009 Feb;11(2):119-29. doi: 10.1093/eurjhf/hfn043, PMID 19168509.

Tschope C, Walther T, Koniger J, Spillmann F, Westermann D, Escher F. Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J. 2004 May;18(7):828-35. doi: 10.1096/fj.03-0736com, PMID 15117887.

Tschope C, Spillmann F, Rehfeld U, Koch M, Westermann D, Altmann C. Improvement of defective sarcoplasmic reticulum Ca2+ transport in diabetic heart of transgenic rats expressing the human kallikrein-1 gene. FASEB J. 2004 Dec;18(15):1967-9. doi: 10.1096/fj.04-1614fje, PMID 15448111.

Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes. 2007 Mar;56(3):641-6. doi: 10.2337/db06-1163, PMID 17327431.

Westermann D, Van linthout S, Dhayat S, Dhayat N, Escher F, Bucker Gartner C. Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes. 2007 Jul 1;56(7):1834-41. doi: 10.2337/db06-1662, PMID 17473225.

Sabahi Z, Khoshnoud MJ, Hosseini S, Khoshraftar F, Rashedinia M. Syringic acid attenuates cardiomyopathy in streptozotocin-induced diabetic rats. Adv Pharmacol Pharm Sci. 2021 Dec 28;2021:5018092. doi: 10.1155/2021/5018092, PMID 34993484.

Alshehri AS, El-Kott AF, El-Gerbed MS, El-Kenawy AE, Albadrani GM, Khalifa HS. Kaempferol prevents cadmium chloride-induced liver damage by upregulating Nrf2 and suppressing NF-κB and keap1. Environ Sci Pollut Res Int. 2022 Feb;29(10):13917-29. doi: 10.1007/s11356-021-16711-3, PMID 34599712.

Moore A, Shindikar A, Fomison Nurse I, Riu F, Munasinghe PE, Ram TP. Rapid onset of cardiomyopathy in STZ-induced female diabetic mice involves the downregulation of pro-survival Pim-1. Cardiovasc Diabetol. 2014 Dec;13:68. doi: 10.1186/1475-2840-13-68, PMID 24685144.

Wang Y, Sun H, Zhang J, Xia Z, Chen W. Streptozotocin-induced diabetic cardiomyopathy in rats: ameliorative effect of PIPERINE via Bcl2, Bax/Bcl2, and caspase-3 pathways. Biosci Biotechnol Biochem. 2020 Dec;84(12):2533-44. doi: 10.1080/09168451.2020.1815170, PMID 32892714.

Refaie MM, Abdel Gaber SA, Rahman SA, Hafez SM, Khalaf HM. Cardioprotective effects of bosentan in 5-fluorouracil-induced cardiotoxicity. Toxicology. 2022 Jan 15;465:153042. doi: 10.1016/j.tox.2021.153042, PMID 34800596.

Polk A, Vistisen K, Vaage Nilsen M, Nielsen DL. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol. 2014 Sep 4;15:47. doi: 10.1186/2050-6511-15-47, PMID 25186061.

Sorrentino MF, Kim J, Foderaro AE, Truesdell AG. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012;19(5):453-8. doi: 10.5603/cj.2012.0084, PMID 23042307.

Moghaddam ZK, Rostami M, Zeraatchi A, Abadi HF, Karamitanha F, Amirmoghaddami H. Evaluation of 5-FU-induced cardiotoxicity: role of cardiac biomarkers. Exp Oncol. 2022;44(1):60-6. doi: 10.32471/exp-oncology.2312-8852.vol-44-no-1.17496, PMID 35548958.

Matsubara I, Kamiya J, Imai S. Cardiotoxic effects of 5-fluorouracil in the guinea pig. Japan J Pharmacol. 1980;30(6):871-9. doi: 10.1254/jjp.30.871, PMID 7241861.

Kumar S, Gupta RK, Samal N. 5-fluorouracil induced cardiotoxicity in albino rats. Mater Med Pol. 1995 Apr-Jun;27(2):63-6. PMID 8935192.

Millart H, Kantelip JP, Platonoff N, Descous I, Trenque T, lamiable D. Increased iron content in rat myocardium after 5-fluorouracil chronic administration. Anticancer Res. 1993 May-Jun;13(3):779-83. PMID 8317911.

Salepci T, Seker M, Uyarel H, Gumus M, Bilici A, Ustaalioglu BB. 5-Fluorouracil induces arterial vasoconstrictions but does not increase angiotensin II levels. Med Oncol. 2010 Jun;27(2):416-20. doi: 10.1007/s12032-009-9226-8, PMID 19415535.

Südhoff T, Enderle MD, Pahlke M, Petz C, Teschendorf C, Graeven U. 5-Fluorouracil induces arterial vasocontractions. Ann Oncol. 2004 Apr;15(4):661-4. doi: 10.1093/annonc/mdh150, PMID 15033676.

Safarpour S, Safarpour S, Pirzadeh M, Moghadamnia AA, Ebrahimpour A, Shirafkan F. Colchicine ameliorates 5-fluorouracil-induced cardiotoxicity in rats. Oxid Med Cell Longev. 2022 Jan 28;2022:6194532. doi: 10.1155/2022/6194532, PMID 35126817.

Refaie MM, Abdel Gaber SA, Rahman SA, Hafez SM, Khalaf HM. Cardioprotective effects of bosentan in 5-fluorouracil-induced cardiotoxicity. Toxicology. 2022 Jan 15;465:153042. doi: 10.1016/j.tox.2021.153042, PMID 34800596.

Barary M, Hosseinzadeh R, Kazemi S, liang JJ, Mansoori R, Sio TT. The effect of propolis on 5-fluorouracil-induced cardiac toxicity in rats. Sci Rep. 2022 May 23;12(1):8661. doi: 10.1038/s41598-022-12735-y, PMID 35606482.

Gui Y, Famurewa AC, Olatunji OJ. Naringin ameliorates 5-fluorouracil induced cardiotoxicity: an insight into its modulatory impact on oxidative stress, inflammatory and apoptotic parameters. Tissue Cell. 2023 Apr;81:102035. doi: 10.1016/j.tice.2023.102035, PMID 36753813.

El-Awady ES, Moustafa YM, Abo-Elmatty DM, Radwan A. Cisplatin-induced cardiotoxicity: mechanisms and cardioprotective strategies. Eur J Pharmacol. 2011 Jan 10;650(1):335-41. doi: 10.1016/j.ejphar.2010.09.085, PMID 21034734.

Meng C, Fan l, Wang X, Wang Y, li Y, Pang SS, Zhang J. Preparation and evaluation of animal models of cardiotoxicity in antineoplastic therapy. Oxid Med Cell Longev. 2011 Jul 5;2022.

Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin-induced renal and cardiac toxicities: molecular mechanisms, current treatment challenges and potential protective measures. Toxicology. 2016 Sep 14;371:58-66. doi: 10.1016/j.tox.2016.10.001, PMID 27717837.

Hu Y, Sun B, Zhao B, Mei D, Gu Q, Tian Z. Cisplatin-induced cardiotoxicity with midrange ejection fraction: a case report and review of the literature. Med (Baltim). 2018 Dec;97(52):e13807. doi: 10.1097/MD.0000000000013807, PMID 30593170.

Başak Türkmen N, Askın Ozek D, Taşlıdere A, Ciftci O, Saral O, Gul CC. Protective role of Diospyros lotus l. in cisplatin-induced cardiotoxicity: cardiac damage and oxidative stress in rats. Turk J Pharm Sci. 2022 Apr 29;19(2):132-7. doi: 10.4274/tjps.galenos.2021.84555, PMID 35509232.

Nageeb MM, Saadawy SF, Attia SH. Breast milk mesenchymal stem cells abate cisplatin-induced cardiotoxicity in adult male albino rats via modulating the AMPK pathway. Sci Rep. 2022 Oct 20;12(1):17554. doi: 10.1038/s41598-022-22095-2, PMID 36266413.

Bayrak S, Aktaş S, Altun Z, Cakir Y, Tutuncu M, Kum Ozsengezer S. Antioxidant effect of acetyl-l-carnitine against cisplatin-induced cardiotoxicity. J Int Med Res. 2020 Aug;48(8):300060520951393. doi: 10.1177/0300060520951393, PMID 32865065.

Ibrahim MA, Bakhaat GA, Tammam HG, Mohamed RM, El-Naggar SA. Cardioprotective effect of green tea extract and vitamin E on cisplatin-induced cardiotoxicity in mice: toxicological, histological and immunohistochemical studies. Biomed Pharmacother. 2019 May;113:108731. doi: 10.1016/j.biopha.2019.108731, PMID 30851549.

Adalı F, Gonul Y, Kocak A, Yuksel Y, Ozkececi G, Ozdemir C. Effects of thymoquinone against cisplatin-induced cardiac injury in rats. Acta Cir Bras. 2016 Apr;31(4):271-7. doi: 10.1590/S0102-865020160040000008, PMID 27168540.

Zhang J, Knapton A, lipshultz SE, Weaver JL, Herman EH. Isoproterenol-induced cardiotoxicity in Sprague-dawley rats: correlation of reversible and irreversible myocardial injury with release of cardiac troponin T and roles of iNOS in myocardial injury. Toxicol Pathol. 2008 Feb;36(2):277-8. doi: 10.1177/0192623307313010, PMID 18349426.

Von Kanel R, Mills PJ, Ziegler MG, Dimsdale JE. Effect of β2-adrenergic receptor functioning and increased norepinephrine on the hypercoagulable state with mental stress. Am Heart J. 2002 Jul;144(1):68-72. doi: 10.1067/mhj.2002.123146, PMID 12094190.

Kapoor D, Bybee KA. Stress cardiomyopathy syndrome: a contemporary review. Curr Heart Fail Rep. 2009 Dec;6(4):265-71. doi: 10.1007/s11897-009-0036-2, PMID 19948095.

Dhalla NS, Adameova A, Kaur M. Role of catecholamine oxidation in sudden cardiac death. Fundam Clin Pharmacol. 2010 Oct;24(5):539-46. doi: 10.1111/j.1472-8206.2010.00836.x, PMID 20584205.

Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol. 1985 Apr;17(4):291-306. doi: 10.1016/s0022-2828(85)80130-9, PMID 3894676.

Remiao F, Rettori D, Han D, Carvalho F, Bastos ML, Cadenas E. leucoisoprenochrome-o-semiquinone formation in freshly isolated adult rat cardiomyocytes. Chem Res Toxicol. 2004 Dec 20;17(12):1584-90. doi: 10.1021/tx049924g, PMID 15606133.

Filipsky T, Zatloukalova L, Mladenka P, Hrdina R. Acute initial haemodynamic changes in a rat isoprenaline model of cardiotoxicity. Hum Exp Toxicol. 2012 Aug;31(8):830-43. doi: 10.1177/0960327112438927, PMID 22381740.

Wu H, Su H, Zhu C, Wu S, Cui S, Zhou M. Establishment and effect evaluation of a stress cardiomyopathy mouse model induced by different doses of isoprenaline. Exp Ther Med. 2023 Apr;25(4):166. doi: 10.3892/etm.2023.11865, PMID 36936708.

Hosseini A, Ghorbani A, Alavi MS, Forouhi N, Rajabian A, Boroumand Noughabi S. Cardioprotective effect of sanguisorba minor against isoprenaline-induced miin rats. Front Pharmacol. 2023;14. doi: 10.3389/fphar.2023.1305816.

Abdelhalim AT, Mahmoud SM, Nur NM, Shaban MA, Mansour S, Ibrahim S. Cardioprotective effects of gallic acid on an isoprenaline-induced myocardial infarction rat model. Int J Nutr Pharmacol Neurol Dis. 2021 Apr 1;11(2):174-9. doi: 10.4103/ijnpnd.ijnpnd_100_20.

Wang Y, Gong GH, Xu YN, Yu LJ, Wei CX. Sugemule-3 protects against isoprenaline-induced cardiotoxicity in vitro. Pharmacogn Mag. 2017 Jul-Sep;13(51):517-22. doi: 10.4103/0973-1296.211018, PMID 28839382.

Ojha S, Bhatia J, Arora S, Golechha M, Kumari S, Arya DS. Cardioprotective effects of commiphora mukul against isoprenaline-induced cardiotoxicity: a biochemical and histopathological evaluation. J Environ Biol. 2011 Nov;32(6):731-8. PMID 22471209.

Meng C, Fan l, Wang X, Wang Y, li Y, Pang S, lv S, Zhang J. Preparation and evaluation of animal models of cardiotoxicity in antineoplastic therapy. Oxid Med Cell Longev. 2022 Jul 5;2022:3820591.

Ranjan A, Ranjan V. Singh A. A hospital based prospective assessment of cardiotoxicity profile of breast cancer patients receiving trastuzumab in adjuvant and maintenance. Int J Curr Pharm Rev Res. 2023;15(5):118-25.

Al-kuraishy H, Al-Gareeb A, Akeel H. Febuxostat modulates oxidative and apoptotic pathways in acute doxorubicin-induced cardiotoxicity: an experimental animal model study. Asian J Pharm Clin Res. 2019;12(4):31162.

Savant C, Kulkarni V, Habbu P, Kulkarni P, Majeed M, Nayak M. Pharmacodynamic interaction of terminalia arjuna (Roxb) with ocimum sanctum (Linn) in isoproterenol induced cardiac necrosis. Asian J Pharm Res. 2022;12(1):19-23. doi: 10.52711/2231-5691.2022.00004.

Published

01-07-2024

How to Cite

RAI, M., A. SINHA, and S. ROY. “A REVIEW ON THE CHEMICAL-INDUCED EXPERIMENTAL MODEL OF CARDIOTOXICITY”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 16, no. 7, July 2024, pp. 1-11, doi:10.22159/ijpps.2024v16i7.51028.

Issue

Section

Review Article(s)