ANTIDEPRESSANT-LIKE ACTIVITY OF AQUEOUS EXTRACT OF ROSA DAMASCENA IN MICE
DOI:
https://doi.org/10.22159/ijpps.2024v16i11.52381Keywords:
Rosa damascena, Antidepressant-like effect, Forced-swimming test, Tail suspension test, Citalopram, DesipramineAbstract
Objective: Plant-based drugs have the potential to be very effective substitutes for prescription antidepressants. Rosa damascena has therapeutic potential as an analgesic, anticonvulsant, antitussive, bronchodilatory, antibacterial, anti-diabetic, anti-inflammatory, antioxidant, and laxative. Given this context, the goal of the current study was to assess Rosa damascena's potential antidepressant effects.
Methods: Maceration was used to create an aqueous extract of Rosa damascena. The Tail Suspension Test (TST) on BALB/c mice and the Forced-Swimming test (FST) on C57BL/6 mice were used to quantify the antidepressant activity. Mice were divided into three groups: control (saline), standard (citalopram and desipramine), and Rosa damascena aqueous extract (n = 6 per group). Intraperitoneally (1 ml/100 g) injections of drugs were administered. Analysis of variance was used to examine the data, and then LSD post-hoc tests were performed. The data are expressed as mean±SEM.
Results: Antidepressant-positive controls, citalopram and desipramine, significantly decreased the time of immobility in the FST and TST as compared to the vehicle control group (p<0.001). In FST, the immobility durations were significantly reduced by the Rosa damascena aqueous extract at a dose of 40 mg/kg compared to lesser doses of the same extract (10 and 20 mg/kg) (p<0.001). Similarly, the 40 mg/kg dose of Rosa damascena aqueous extract significantly reduced the length of immobility in TST (p<0.001).
Conclusion: The present findings demonstrate Rosa damascena's antidepressant-like effects in mice. Further research is necessary to determine the underlying mechanism by which Rosa damascena generates effects akin to those of an antidepressant in light of this observation.
Downloads
References
Umo UA. The various dimensions of depression and solutions. 2nd Ed. Calabar Nigeria: Stiffaith Prints Co; 2023.
Lim GY, Tam WW, LU Y, HO CS, Zhang MW, HO RC. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci Rep. 2018 Feb 12;8(1):2861. doi: 10.1038/s41598-018-21243-x, PMID 29434331.
Weinberger AH, Gbedemah M, Martinez AM, Nash D, Galea S, Goodwin RD. Trends in depression prevalence in the USA from 2005 to 2015: widening disparities in vulnerable groups. Psychol Med. 2018 Jun;48(8):1308-15. doi: 10.1017/S0033291717002781, PMID 29021005.
Nemeroff CB, Owens MJ. Treatment of mood disorders. Nat Neurosci. 2002 Nov;5(S11):1068-70. doi: 10.1038/nn943.
Kushwaha V, Agrawal P, Singh S, Chaudhary D, Verma AK, Sharma H. Assessment of adverse drug reactions of antidepressant drugs used in psychiatry department of a Tertiary Care Hospital. Asian J Pharm Clin Res. 2022;15(4):49-54. doi: 10.22159/ajpcr.2022.v15i4.44287.
Choudhari P, Kanse V, Venkatachalam A, Pal PR. Medicinal plants with anxiolytic antidepressant anticonvulsant and nootropic effect. World J Pharm Res. 2021 Feb 5;10(4):787-97.
HA A, Mehdi S, Krishna KL, Nabeel K. Medicinal herbs and phytochemicals used in the treatment of depression: a review. Asian J Pharm Clin Res. 2019;12(5):1-7.
Guragac Dereli FT, Ilhan M, Kupeli Akkol E. Identification of the main active antidepressant constituents in a traditional turkish medicinal plant Centaurea kurdica reichardt. J Ethnopharmacol. 2020 Mar 1;249:112373. doi: 10.1016/j.jep.2019.112373.
LI JM, Zhao Y, Sun Y, Kong LD. Potential effect of herbal antidepressants on cognitive deficit: pharmacological activity and possible molecular mechanism. J Ethnopharmacol. 2020 Jul 15;257:112830. doi: 10.1016/j.jep.2020.112830, PMID 32259666.
Pan SY, Zhou SF, Gao SH, YU ZL, Zhang SF, Tang MK. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013:627375. doi: 10.1155/2013/627375, PMID 23634172.
Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016 May 20;261(3):201-17. doi: 10.11646/phytotaxa.261.3.1.
Ghazanfar SA. Handbook of Arabian medicinal plants. CRC Press; 1994 Aug 24.
Khaleghi A, Khadivi A. Morphological characterization of damask rose (Rosa × damascena Herrm.) germplasm to select superior accessions. Genet Resour Crop Evol. 2020 Dec;67(8):1981-97. doi: 10.1007/s10722-020-00954-z.
Boskabady MH, Shafei MN, Saberi Z, Amini S. Pharmacological effects of Rosa damascena. Iran J Basic Med Sci. 2011 Jul;14(4):295-307. PMID 23493250.
Labban L, Thallaj N. The medicinal and pharmacological properties of damascene rose (Rosa damascena): a review. Int J Herb Med. 2020;8(2):33-7.
Mahboubi M. Rosa damascena as holy ancient herb with novel applications. J Tradit Complement Med. 2016 Jan 1;6(1):10-6. doi: 10.1016/j.jtcme.2015.09.005.
Divakar MC, Al Siyabi A, Varghese SS, Al Rubaie M. The practice of ethnomedicine in the northern and southern provinces of Oman. Oman Med J. 2016 Jul;31(4):245-52. doi: 10.5001/omj.2016.49.
Chen L, Faas GC, Ferando I, Mody I. Novel insights into the behavioral analysis of mice subjected to the forced swim test. Transl Psychiatry. 2015 Apr;5(4):e551. doi: 10.1038/tp.2015.44, PMID 25871976.
Tang M, HE T, Meng QY, Broussard JI, Yao L, Diao Y. Immobility responses between mouse strains correlate with distinct hippocampal serotonin transporter protein expression and function. Int J Neuropsychopharm. 2014 Nov 1;17(11):1737-50. doi: 10.1017/S146114571400073X.
Mohamadi M, Mostafavi A, Shamspur T. Effect of storage on essential oil content and composition of Rosa damascena mill. petals under different conditions. J of Essential Oil Bear Plants. 2011 Jan 1;14(4):430-41. doi: 10.1080/0972060X.2011.10643598.
Azwanida NN. A review on the extraction methods use in medicinal plants principle strength and limitation. Med Aromat Plants. 2015 Jul;4(196):2167-412.
Porsolt RD, LE Pichon M, Jalfre ML. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977 Apr;266(5604):730-2. doi: 10.1038/266730a0, PMID 559941.
Cryan JF, Page ME, Lucki I. Differential behavioral effects of the antidepressants reboxetine fluoxetine and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacol. 2005 Nov;182(3):335-44. doi: 10.1007/s00213-005-0093-5, PMID 16001105.
Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD. The tail suspension test. J Vis Exp. 2012 Jan 28;(59):e3769. doi: 10.3791/3769, PMID 22315011.
Gardner A, Boles RG. Beyond the serotonin hypothesis: mitochondria inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2011 Apr 29;35(3):730-43. doi: 10.1016/j.pnpbp.2010.07.030, PMID 20691744.
Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today. 2020 Jul 1;25(7):1270-6. doi: 10.1016/j.drudis.2020.05.001.
Cheng BC, FU XQ, Guo H, LI T, WU ZZ, Chan K. The genus rosa and arthritis: overview on pharmacological perspectives. Pharmacol Res. 2016 Dec 1;114:219-34. doi: 10.1016/j.phrs.2016.10.029, PMID 27816506.
Correia AS, Cardoso A, Vale N. Oxidative stress in depression: the link with the stress response neuroinflammation serotonin neurogenesis and synaptic plasticity. Antioxidants (Basel). 2023 Feb 13;12(2):470. doi: 10.3390/antiox12020470, PMID 36830028.
Willner P, Mitchell PJ. The validity of animal models of predisposition to depression. Behav Pharmacol. 2002 May 1;13(3):169-88. doi: 10.1097/00008877-200205000-00001.
Porsolt RD. Behavioral despair antidepressants: neurochemical behavioral and clinical perspectives. In: Enna SJ, Malick JB, editors. Richelson E editors. New York: Raven Press; 1981. p. 121-39.
Kaneko F, Kawahara Y, Kishikawa Y, Hanada Y, Yamada M, Kakuma T. Long-term citalopram treatment alters the stress responses of the cortical dopamine and noradrenaline systems: the role of cortical 5-HT1A receptors. Int J Neuropsychopharmacol. 2016 Aug 1;19(8):pyw026. doi: 10.1093/ijnp/pyw026, PMID 27029212.
Maan JS, Rosani A, Saadabadi A. Desipramine. StatPearls Publishing; 2021 Sep 14.
Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965 Nov;122(5):509-22. doi: 10.1176/ajp.122.5.509, PMID 5319766.
Moragrega I, Rios JL. Medicinal plants in the treatment of depression: evidence from preclinical studies. Planta Med. 2021 Aug;87(9):656-85. doi: 10.1055/a-1338-1011.
Guan LP, Liu BY. Antidepressant-like effects and mechanisms of flavonoids and related analogues. Eur J Med Chem. 2016 Oct 4;121:47-57. doi: 10.1016/j.ejmech.2016.05.026, PMID 27214511.
Moalem SA, Hosseinzadeh H, Ghoncheh F. Evaluation of antidepressant effects of aerial parts of Echium vulgare on mice. Iran J Basic Med Sci. 2007;10(3):189-96.
Behr GA, Moreira JC, Frey BN. Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxid Med Cell Longev. 2012;2012(1):609421. doi: 10.1155/2012/609421, PMID 22693652.
Togbossi LA, Lawson Evi P, Diallo A, Eklu Gadegbeku K, Aklikokou K. Evaluation of antioxidant and antidepressant activity of hydro alcoholic extract of Ximenia americana stem bark. J Phytopharmacol. 2020;9(5):323-8. doi: 10.31254/phyto.2020.9506.
Published
How to Cite
Issue
Section
Copyright (c) 2024 JAMALUDDIN SHAIKH, AFAF MOHAMMED WELI, SADRI ABDULLAH SAID
This work is licensed under a Creative Commons Attribution 4.0 International License.