ESBL, MBL AND AMP C-β LACTAMASES PRODUCED BY SUPERBUGS: AN EMERGING THREAT TO CLINICAL THERAPEUTICS
Keywords:
Pseudomonas aeruginosa, Beta-lactamase genes, MDRAbstract
Objectives: The present study was undertaken to determine the prevalence of multi drug resistant (MDR) and multiple β-lactamase producing Pseudomonas aeruginosa isolates in lower respiratory tract infection (LRTI) patients at a tertiary care hospital in India.
Methods: A total of 80 consecutive, non-duplicate isolates of P. aeruginosa were studied for the presence of class A or B β-lactamase. Antibiotic susceptibility tests and PCR amplification of genes encoding class A (PER-1 and CTX-M 1, 2, 9) and class B β-lactamases (blaVIM-2, blaIMP-1 and blaSIM-1) were performed.
Results: Out of 80 P. aeruginosa isolates, 65% (52/80) of the isolates were MDR with 34 being Metallo-β-lactamase (MBL) producers, 23 were extended spectrum β-lactamase (ESBL) producers and 21 were positive for AmpC production. The cross-class resistance rates to other antibiotics was significantly higher in class A and B β-lactamase producers than in non-producers (P<0.05 for fluoroquinolone, aztreonam, ceftazidime and meropenem). Combined disk test (CDT) for MBL highest sensitivity and specificity compared to PCR. Combined disk method (CDM) for ESBL co-related well with PCR (sensitivity and specificity).
Conclusion: This study reports the validation of a simple and accurate MBL and ESBL detection method which can be easily integrated into the daily routine of a clinical laboratory.
Â
Downloads
References
Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of pseudomonas aeruginosa infections. Drugs 2007;67:351-68.
Ramakrishnan K, Rajagopalan S, Nair S, Kenchappa P, Chandrakesan SD. Molecular characterization of metallo β-lactamase producing multidrug resistant Pseudomonas aeruginosa from various clinical samples. Indian J Pathol Microbiol 2014;57:579-82.
Safari M, Nejad ASM, Bahador A, Jafari R, Alikhani MY. Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU). Saudi J Biol Sci 2015;22:424–9.
Bailey and Scott’s Diagnostic Microbiology. Eds. Baron EJ, Peterson LR, Finegold SM. 12thed. Mosby-Year Book: St. Louis, Missouri, U.S.A; 2007.
Clinical Laboratory Standards Institute(CLSI). Performance standarts for Antimicrobial Susceptibility testing; Twenty‑ First Informational Supplement; 2010. p. M100‑ S21.
da Silva Filho LV, Levi JE, Bento CN. Molecular epidemiology of Pseudomonas aeruginosa infections in a cystic fibrosis outpatient clinic. J Med Microbiol 2001;50:261-7.
Upadhyay S, Sen MR, Bhattacharjee A. Presence of different betalactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J Infect Dev Countries 2010;4:239-42.
Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broadspectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988;1:867-78.
Coudron PE. Inhibitor-based methods for detection of plasmidmediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli and Proteus mirabilis. J Clin Microbiol 2005;43:4163-7.
Lee K, Chong Y, Shin HB. Modified Hodge and EDTA-disc synergy tests to screen metallo-b-lactamase-producing strains of Pseudomonas and acinetobacter species. Clin Microbiol Infect 2001;7:88–91.
Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 2007;59:321–2.
Lee S, Park YJ, Kim M, Lee KH, Kyungja H, Kang SC, et al. Prevalence of ambler class A and D b-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother 2005;56:122-7.
Senthamarai S, Reddy SK, Sivasankari S, Anitha C, Somasunder V, Kumudhavathi MS, et al. Resistance pattern of pseudomonas aeruginosa in a tertiary care hospital of kanchipuram, tamilnadu, India. J Clin Diagn Res 2014;8:30-2.
Ling JM, Cheng AF. Antimicrobial resistance of clinical isolates from 1987 to 1993 in Hong Kong. HKMJ 1995;1:212-8.
Idris SNA, Desa MNM, Aziz MN, Taib NM. Antimicrobial susceptibility pattern and distribution of ExoU and ExoS genes in clinical isolates of pseudomonas aeruginosa at a malaysian hospital. Southeast Asian J Trop Med Public Health 2012;43:116-23.
S Paranjothi, R Dheepa. Screening for multidrug resistance bacteria Pseudomonas aeruginosa in hospitalized patients in Hosur, Krishnagiri(DT). Int J Pharm Biosci 2010;1:1-15.
Diwivedi M, Mishra A, Singh RK, Azim A, Baronia AK, Prasad KN. The nosocomial cross–transmission of pseudomonas aeruginosabetween patients in a tertiary intensive care unit. Indian J Pathol Microbiol 2009;52:509-13.
Goel V, Sumati A, Hogade SG, Karadesai. Prevalence of extended-spectrumbeta-lactamases, AmpC beta lactamase,and metallo beta lactamase producing Pseudomonas aeruginosa and Acinetobacterbaumannii in an intensive care unit in a tertiary care hospital. J Sci Soc 2013;40:28-31.
Prashant D, Peshattiwar, Basavaraj Virupaksappa Peerapur. ESBL and MBL mediated resistance in Pseudomonas aeruginosa: an emerging threat to clinical therapeutics. J Clin Diagn Res 2011;5:1552-4.
Aggarwal R, Chaudhary U, Bala K. Detection of extended spectrum beta lactamase in Pseudomonas aeruginosa. Indian J Pathol Microbiol 2008;51:222 4.
Chaudhari U, Bhaskar H, Sharma M. The Imipenem-EDTA disk method for the rapid identification of metallo β lactamase producing gram negative bacteria. IndianJ Med Res 2008;127:406-7.
Pournaras S, Ikonomidis A, Kristo I, Tsakris A, Maniatis AN. CTX-M enzymes are the most common extended-spectrum b-lactamases among Escherichia coli in a tertiary Greek hospital. J Antimicrob Chemother 2004;54:574–5.
Varaiya A, Kulkarni N, Kulkarni M, Bhalekar P, Dogra J. The incidence of metallo beta lactamase producing Pseudomonas aeruginosa in ICU patients. Indian J Med Res 2008;127:398-402.