ETHNOPHARMACOLOGICAL REVIEW OF NATURAL PRODUCTS IN CANCER PREVENTION AND THERAPY
DOI:
https://doi.org/10.22159/ajpcr.2018.v11i6.24792Keywords:
Natural products, Anticancer drugs, Alkaloids, Podophyllotoxin, Camptothecin, Resveratrol, Curcumin, Quercetin etc, Cell cycle arrest, ApoptosisAbstract
The World Health Organization reports that approximately 80% population from developing countries are facing complications from synthetic drugs used in maintaining their primary health-care needs. The chemotherapeutic strategies are very striking and have earned serious concern as potential means of controlling the incidence of this dreadful disease. However, the major problem in cancer is the long lasting toxicity of the well reputable chemical drugs. Since ancient times, medicinal plants have attracted enormous attention, to fight against various diseases with their broad-spectrum biological and therapeutic properties. Although plants, phytochemicals and their analogues have been confirmed to be safe and effective, having strong anticancer properties. A number of pharmaceutical agents with diverse chemical structures of natural origin from plants have been discovered as anticancer agents such as vincristine, vinblastine, podophyllotoxin, camptothecin, taxol, resveratrol, withaferin A, quercetin, and curcumin. Further modifications of these phytochemicals led to the development of numerous outstanding molecules such as drugs like topotecan, irinotecan, taxotere, etoposide, and teniposide. In this in-depth review, we meticulously investigated the selected medicinal plants for their anticancer properties. In particular, novel compounds from plants have beneficial effects on human health. Our observations suggest the preventive and therapeutic use of phytochemicals in managing various human malignancies.
Downloads
References
Schultes RE. The Kingdom of Plants. Medicines from the Earth. New York: McGraw-Hill Book Co.; 1978. p. 208.
Machado TB, Pinto AV, Pinto MC, Leal IC, Silva MG, Amaral AC, et al. In vitro activity of Brazilian medicinal plants, naturally occurring naphthoquinones and their analogues, against methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2003;21:279-84.
Manju K, Jat RK, Anju G. A review on medicinal plants used as a source of anticancer agents. Int J Drug Res Technol 2017;2:6.
Balandrin MF, Kinghorn AD, Farnsworth NR. Plant-Derived Natural Products in Drug Discovery and Development: An Overview. Washington, DC: American Chemical Society: 1993. p. 2-12.
Farnsworth NR. The role of ethnopharmacology in drug development. Ciba Found Symp 1990;154:2-11.
Cragg GM, Newman DJ. Discovery and development of antineoplastic agents from natural sources. Cancer Invest 1999;17:153-63.
Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN v1. 0. Cancer Incidence and Mortality Worldwide. Lyon, France: IARC Cancer Base; 2012.
McGuire S. World cancer report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press, 2015. Advances in Nutrition: An International Review Journal 2016;7 (2):418-9.
Subramaniyan VI, Saravanan RE, Baskaran DE, Ramalalingam SI. In vitro free radical scavenging and anticancer potential of Aristolochia indica L. against MCF-7 cell line. Int J Pharm Pharm Sci 2015;7:392-6.
Larkin T. Herbs are often more toxic than magical. FDA Consumer. Food Drug Adm (USA) 1983;17:4-11.
Saxe TG. Toxicity of medicinal herbal preparations. Am Fam Physician 1987;35:135-42.
Cragg GM, Kingston DG, Newman DJ, editors. Anticancer Agents from Natural Products. Boca Raton, FL: CRC Press; 2011.
Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981−2002. J Nat Prod 2003;66:1022-37.
Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol 2005;100:72-9.
Dhanamani MD, Devi SL, Kannan S. Ethnomedicinal plants for cancer therapy–a review. Hygeia JD Med 2011;3:1-10.
Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, et al. Natural compounds for cancer treatment and prevention. Pharmacol Res 2009;59:365-78.
Ismael GF, Rosa DD, Mano MS, Awada A. Novel cytotoxic drugs: Old challenges, new solutions. Cancer Treat Rev 2008;34:81-91.
Liu YQ, Yang L, Tian X. Podophyllotoxin: Current perspectives. Curr Bioact Compd 2007;3:37-66.
Farkya S, Bisaria VS, Srivastava AK. Biotechnological aspects of the production of the anticancer drug podophyllotoxin. Appl Microbiol Biotechnol 2004;65:504-19.
Guerram M, Jiang ZZ, Zhang LY. Podophyllotoxin, a medicinal agent of plant origin: Past, present and future. Chinese J Nat Med 2012;10:161 99.
Choi JY, Cho HJ, Hwang SG, Kim WJ, Kim JI, Um HD, et al. Podophyllotoxin acetate enhances γ-ionizing radiation-induced apoptotic cell death by stimulating the ROS/p38/caspase pathway. Biomed Pharmacother 2015;70:111-8.
Hong WG, Cho JH, Hwang SG, Lee E, Lee J, Kim JI, et al. Chemosensitizing effect of podophyllotoxin acetate on topoisomerase inhibitors leads to synergistic enhancement of lung cancer cell apoptosis. Int J Oncol 2016;48:2265-76.
Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AA, Sim GA. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2. J Am Chem Soc 1966;88:3888-90.
Yang XL, Luo YL, Xu F, Chen YS. Thermosensitive mPEG-b-PA-g- PNIPAM comb block copolymer micelles: Effect of hydrophilic chain length and camptothecin release behavior. Pharm Res 2014;31:291 304.
Karthaus M, Ballo H, Abenhardt W, Steinmetz T, Geer T, Schimke J, et al. Prospective, double-blind, placebo-controlled, multicenter, randomized phase III study with orally administered budesonide for prevention of irinotecan (CPT-11)-induced diarrhea in patients with advanced colorectal cancer. Oncology 2005;68:326-32.
Gore M, Huinink WB, Carmichael J, Gordon A, Davidson N, Coleman R, et al. Clinical evidence for topotecan-paclitaxel non–cross-resistance in ovarian cancer. J Clin Oncol 2001;19:1893-900.
Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan study group. N Engl J Med 2000;343:905 14.
Pommier Y, Barcelo JM, Rao VA, Sordet O, Jobson AG, Thibaut L, et al. Repair of topoisomerase I-mediated DNA damage. Prog Nucleic Acid Res Mol Biol 2006;81:179-229.
Ricci A, Marinello J, Bortolus M, Sánchez A, Grandas A, Pedroso E, et al. Electron paramagnetic resonance (EPR) study of spin-labeled camptothecin derivatives: A different look of the ternary complex. J Med Chem 2011;54:1003-9.
Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971;93:2325 7.
Pujol M, Gavilondo J, Ayala M, RodrÃguez M, González EM, Pérez L, et al. Fighting cancer with plant-expressed pharmaceuticals. Trends Biotechnol 2007;25:455-9.
Schutz FA, Buzaid AC, Sartor O. Taxanes in the management of metastatic castration-resistant prostate cancer: Efficacy and management of toxicity. Crit Rev Oncol Hematol 2014;91:248-56.
Cheetham P, Petrylak DP. Tubulin-targeted agents including docetaxel and cabazitaxel. Cancer J 2013;19:59-65.
Itokawa H, Wang X, Lee KH. Homoharringtonine and related compounds. Anticancer Agents from Natural Products. Boca Raton, FL: CRC Press; 2005. p. 47-70.
Powell RG, Weisleder D, Smith CR Jr., Rohwedder WK. Structures of harringtonine, isoharringtonine, and homoharringtonine. Tetrahedron Lett 1970;11:815-8.
Kantarjian HM, O’Brien S, Cortes J. Homoharringtonine/ omacetaxine mepesuccinate: The long and winding road to food and drug administration approval. Clin Lymphoma Myeloma Leuk 2013;13:530 3.
Tujebajeva RM, Graifer DM, Karpova GG, Ajtkhozhina NA. Alkaloid homoharringtonine inhibits polypeptide chain elongation on human ribosomes on the step of peptide bond formation. FEBS Lett 1989;257:254-6.
Gürel G, Blaha G, Moore PB, Steitz TA. U2504 determines the species specificity of the a-site cleft antibiotics: The structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. J Mol Biol 2009;389:146-56.
Langcake P, Pryce RJ. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 1976;9:77-86.
Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: A molecule whose time has come? And gone? Clin Biochem 1997;30:91-113.
Siemann EH, Creasy LL. Concentration of the phytoalexin resveratrol in wine. American J Enol Vitic 1992;43:49-52.
Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997;275:218-20.
Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y, et al. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res 2004;24:2783-840.
Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, et al. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 2007;224:274-83.
Ding XZ, Adrian TE. Resveratrol inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Pancreas 2002;25:e71-6.
Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K. Molecular insight in the multifunctional activities of withaferin A. Biochem Pharmacol 2012;84:1282-91.
Oh JH, Lee TJ, Kim SH, Choi YH, Lee SH, Lee JM, et al. Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of akt phosphorylation. Apoptosis 2008;13:1494-504.
Srinivasan S, Ranga RS, Burikhanov R, Han SS, Chendil D. Par-4- dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 2007;67:246-53.
Stan SD, Zeng Y, Singh SV. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer 2008;60 Suppl 1:51-60.
Yu Y, Hamza A, Zhang T, Gu M, Zou P, Newman B, et al. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 2010;79:542-51.
Kakar SS, Ratajczak MZ, Powell KS, Moghadamfalahi M, Miller DM, Batra SK, et al. Withaferin a alone and in combination with cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PLoS One 2014;9:e107596.
Oh JH, Kwon TK. Withaferin A inhibits tumor necrosis factor-α- induced expression of cell adhesion molecules by inactivation of Akt and NF-κB in human pulmonary epithelial cells. Int Immunopharmacol 2009;9:614-9.
Malik F, Kumar A, Bhushan S, Khan S, Bhatia A, Suri KA, et al. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 2007;12:2115-33.
Rajendran P, Rengarajan T, Nandakumar N, Palaniswami R, Nishigaki Y, Nishigaki I, et al. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem 2014;86:103-12.
Jaramillo-Carmona S, Lopez S, Abia R, Rodriguez-Arcos R, Jimenez A, Guillen R, et al. Combination of quercetin and kaempferol enhances in vitro cytotoxicity on human colon cancer (HCT-116) cells. Records Nat Prod 2014;8:262.
Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013;138:2099 107.
Azevedo C, Correia-Branco A, Araújo JR, Guimarães JT, Keating E, Martel F. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr Cancer 2015;67:504-13.
Kuo WT, Tsai YC, Wu HC, Ho YJ, Chen YS, Yao CH, et al. Radiosensitization of non-small cell lung cancer by kaempferol. Oncol Rep 2015;34:2351-6.
Halimah E, Diantini A, Destiani DP, Pradipta IS, Sastramihardja HS, Lestari K, et al. Induction of caspase cascade pathway by kaempferol- 3-O-rhamnoside in LNCaP prostate cancer cell lines. Biomed Rep 2015;3:115-7.
Song W, Dang Q, Xu D, Chen Y, Zhu G, Wu K, et al. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncol Rep 2014;31:1350-6.
Song H, Bao J, Wei Y, Chen Y, Mao X, Li J, et al. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study. Oncol Rep 2015;33:868-74.
Kashafi E, Moradzadeh M, Mohamadkhani A, Erfanian S. Kaempferol increases apoptosis in human cervical cancer heLa cells via PI3K/AKT and telomerase pathways. Biomed Pharmacother 2017;89:573 7.
Sun CM, Syu WJ, Don MJ, Lu JJ, Lee GH. Cytotoxic sesquiterpene lactones from the root of Saussurea lappa. J Nat Prod 2003;66:1175-80.
Li A, Sun A, Liu R. Preparative isolation and purification of costunolide and dehydrocostuslactone from Aucklandia lappa decne by high-speed counter-current chromatography. J Chromatogr A 2005;1076:193-7.
Barrero AF, Oltra JE, Alvarez M, Raslan DS, Saúde DA, Akssira M, et al. New sources and antifungal activity of sesquiterpene lactones. Fitoterapia 2000;71:60-4.
Hung JY, Hsu YL, Ni WC, Tsai YM, Yang CJ, Kuo PL, et al. Oxidative and endoplasmic reticulum stress signaling are involved in dehydrocostuslactone-mediated apoptosis in human non-small cell lung cancer cells. Lung Cancer 2010;68:355-65.
Kuo PL, Ni WC, Tsai EM, Hsu YL. Dehydrocostuslactone disrupts signal transducers and activators of transcription 3 through up-regulation of suppressor of cytokine signaling in breast cancer cells. Mol Cancer Ther 2009;8:1328-39.
Kim EJ, Lim SS, Park SY, Shin HK, Kim JS, Park JH, et al. Apoptosis of DU145 human prostate cancer cells induced by dehydrocostus lactone isolated from the root of Saussurea lappa. Food Chem Toxicol 2008;46:3651-8.
Hsu YL, Wu LY, Kuo PL. Dehydrocostuslactone, a medicinal plant-derived sesquiterpene lactone, induces apoptosis coupled to endoplasmic reticulum stress in liver cancer cells. J Pharmacol Exp Ther 2009;329:808-19.
Oh GS, Pae HO, Chung HT, Kwon JW, Lee JH, Kwon TO, et al. Dehydrocostus lactone enhances tumor necrosis factor-α-induced apoptosis of human leukemia HL-60 cells. Immunopharmacol Immunotoxicol 2004;26:163-75.
Bischoff SC. Quercetin: Potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 2008;11:733-40.
Kumar A, Sehgal N, Kumar P, Padi SS, Naidu PS. Protective effect of Quercetin against ICV colchicine-induced cognitive dysfunctions and oxidative damage in rats. Phytother Res 2008;22:1563-9.
Hussain SA, Panjagari NR, Singh RR, Patil GR. Potential herbs and herbal nutraceuticals: Food applications and their interactions with food components. Crit Rev Food Sci Nutr 2015;55:94-122.
Chen SF, Nien S, Wu CH, Liu CL, Chang YC, Lin YS, et al. Reappraisal of the anticancer efficacy of Quercetin in oral cancer cells. J Chin Med Assoc 2013;76:146-52.
Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid Quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol 2010;649:84-91.
Kim KH, Lee KW, Kim DY, Park HH, Kwon IB, Lee HJ, et al. Optimal recovery of high-purity rutin crystals from the whole plant of Fagopyrum esculentum moench (buckwheat) by extraction, fractionation, and recrystallization. Bioresour Technol 2005;96:1709 12.
Harborne JB. Nature, distribution and function of plant flavonoids. Prog Clin Biol Res 1986;213:15-24.
Javed H, Khan MM, Ahmad A, Vaibhav K, Ahmad ME, Khan A, et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of alzheimer type. Neuroscience 2012;210:340-52.
Araújo JR, Gonçalves P, Martel F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 2011;31:77-87.
Lin JP, Yang JS, Lin JJ, Lai KC, Lu HF, Ma CY, et al. Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environ Toxicol 2012;27:480-4.
Cristina Marcarini J, Ferreira Tsuboy MS, Cabral Luiz R, Regina Ribeiro L, Beatriz Hoffmann-Campo C, Ségio Mantovani M, et al. Investigation of cytotoxic, apoptosis-inducing, genotoxic and protective effects of the flavonoid rutin in HTC hepatic cells. Exp Toxicol Pathol 2011;63:459-65.
Deschner EE, Ruperto J, Wong G, Newmark HL. Quercetin and rutin as inhibitors of azoxymethanol-induced colonic Neoplasia. Carcinogenesis 1991;12:1193-6.
Sahu PK. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues. Eur J Med Chem 2016;121:510-6.
Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. Turmeric and curcumin: Biological actions and medicinal applications. Curr Sci Bangalore 2004;87:44-53.
Jayaprakasha GK, Rao LJ, Sakariah KK. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem 2006;98:720-4.
Abraham SK, Sarma L, Kesavan PC. Protective effects of chlorogenic acid, curcumin and β-carotene against γ-radiation-induced in vivo chromosomal damage. Mutat Res Lett 1993;303:109-12.
Baldwin PR, Reeves AZ, Powell KR, Napier RJ, Swimm AI, Sun A, et al. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of mycobacterium tuberculosis. Eur J Med Chem 2015;92:693-9.
Kim MK, Jeong W, Kang J, Chong Y. Significant enhancement in radical-scavenging activity of curcuminoids conferred by acetoxy substituent at the central methylene carbon. Bioorg Med Chem 2011;19:3793-800.
Aggarwal BB, Surh YJ, Shishodia S, editors. The Molecular Targets and Therapeutic uses of Curcumin in Health and Disease. US: Springer Science & Business Media; 2007. p. 1-75.
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2014;66:222 307.
Lelli D, Pedone C, Sahebkar A. Curcumin and treatment of melanoma: The potential role of microRNAs. Biomed Pharmacother 2017;88:832 4.
Chen B, Zhang Y, Wang Y, Rao J, Jiang X, Xu Z, et al. Curcumin inhibits proliferation of breast cancer cells through nrf2-mediated down-regulation of fen1 expression. J Steroid Biochem Mol Biol 2014;143:11-8.
Tan TW, Tsai HR, Lu HF, Lin HL, Tsou MF, Lin YT, et al. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer Res 2006;26:4361-71.
Zhu JY, Yang X, Chen Y, Jiang Y, Wang SJ, Li Y, et al. Curcumin suppresses lung cancer stem cells via inhibiting wnt/β-catenin and sonic hedgehog pathways. Phytother Res 2017;31:680-8.
Chen J, Zhang L, Shu Y, Chen L, Zhu M, Yao S, Wang J, Wu J, Liang G, Wu H, Li W. Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB. BioMed Res Int 2017. Article ID: 4751260, 10 Pages.
Soong YY, Barlow PJ. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 2004;88:411-7.
Wang RF, Xie WD, Zhang Z, Xing DM, Ding Y, Wang W, et al. Bioactive compounds from the seeds of Punica granatum (pomegranate). J Nat Prod 2004;67:2096-8.
Priyadarsini KI, Khopde SM, Kumar SS, Mohan H. Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 2002;50:2200-6.
Narayanan BA, Geoffroy O, Willingham MC, Re GG, Nixon DW. P53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells. Cancer Lett 1999;136:215 21.
Larrosa M, Tomás-Barberán FA, EspÃn JC. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma caco-2 cells by using the mitochondrial pathway. J Nutr Biochem 2006;17:611-25.
Castonguay A, Boukharta M, Teel R. Biodistribution of, antimutagenic efficacies in Salmonella typhimurium of, and inhibition of P450 activities by ellagic acid and one analogue. Chem Res Toxicol 1998;11:1258-64.
Li TM, Chen GW, Su CC, Lin JG, Yeh CC, Cheng KC, et al. Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anticancer Res 2005;25:971-9.
Kim DS, Baek NI, Oh SR, Jung KY, Lee IS, Kim JH, et al. Anticomplementary activity of ergosterol peroxide from Naematoloma fasciculare and reassignment of NMR data. Arch Pharm Res 1997;20:201-5.
Lindequist U, Lesnau A, Teuscher E, Pilgrim H. The antiviral action of ergosterol peroxide. Pharmazie 1989;44:579-80.
Fujimoto H, Nakayama M, Nakayama Y, Yamazaki M. Isolation and characterization of immunosuppressive components of three mushrooms, Pisolithus tinctorius, Microporus flabelliformis and Lenzites betulina. Chem Pharm Bull (Tokyo) 1994;42:694-7.
Yasukawa K, Akihisa T, Kanno H, Kaminaga T, Izumida M, Sakoh T, et al. Inhibitory effects of sterols isolated from chlorella vulgaris on 12-0-tetradecanoylphorbol-13-acetate-induced inflammation and tumor promotion in mouse skin. Biol Pharm Bull 1996;19:573-6.
Takei T, Yoshida M, Ohnishi-Kameyama M, Kobori M. Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. Biosci Biotechnol Biochem 2005;69:212-5.
Kang JH, Jang JE, Mishra SK, Lee HJ, Nho CW, Shin D, et al. Ergosterol peroxide from chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J Ethnopharmacol 2015;173:303-12.
Mishra SK, Kang JH, Kim DK, Oh SH, Kim MK. Orally administered aqueous extract of Inonotus obliquus ameliorates acute inflammation in dextran sulfate sodium (DSS)-induced colitis in mice. J Ethnopharmacol 2012;143:524-32.
Mishra SK, Kang JH, Song KH, Park MS, Kim DK, Park YJ, et al. Inonotus obliquus suppresses proliferation of colorectal cancer cells and tumor growth in mice models by downregulation of β-catenin/ NF-κB-signaling pathways. Eur J Inflamm 2013;11:615-29.
Sinha D, Sarkar N, Biswas J, Bishayee A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin Cancer Biol 2016;40-41:209-32.
Schaafsma E, Hsieh TC, Doonan BB, Pinto JT, Wu JM. Anticancer activities of resveratrol in colorectal cancer. Biol Med 2016;8:1.
Tan L, Wang W, He G, Kuick RD, Gossner G, Kueck AS, et al. Resveratrol inhibits ovarian tumor growth in an in vivo mouse model. Cancer 2016;122:722-9.
Sharmila G, Bhat FA, Arunkumar R, Elumalai P, Raja Singh P, Senthilkumar K, et al. Chemopreventive effect of Quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin Nutr 2014;33:718-26.
Duraj J, Zazrivcova K, Bodo J, Sulikova M, Sedlak J. Flavonoid Quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants. Neoplasma 2005;52:273-9.
Landete JM. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res Int 2011;44:1150-60.
Russo A, Cardile V, Piovano M, Caggia S, Espinoza CL, Garbarino JA. Pro-apoptotic activity of ergosterol peroxide and (22E)-ergosta-7, 22-dien-5α-hydroxy-3, 6-dione in human prostate cancer cells. Chem Biol Interact 2010;184:352-8.
Rivlin RS. Historical perspective on the use of garlic. J Nutr 2001;131:951S-4.
Bloch AS. Pushing the envelope of nutrition support: Complementary therapies1. Nutrition 2000;16:236-9.
Zhang Y, Moriguchi T, Saito H, Nishiyama N. Functional relationship between age-related immunodeficiency and learning deterioration. Eur J Neurosci 1998;10:3869-75.
Thomson M, Ali M. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Curr Cancer Drug Targets 2003;3:67-81.
Omar SH, Al-Wabel NA. Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharm J 2010;18:51-8.
Shirzad H, Taji F, Rafieian-Kopaei M. Correlation between antioxidant activity of garlic extracts and WEHI-164 Fibrosarcoma tumor growth in BALB/c mice. J Med Food 2011;14:969-74.
George VC, Kumar DR, Rajkumar V, Suresh PK, Kumar RA. Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of Annona muricata Linn. In normal and immortalized human cell lines. Asian Pac J Cancer Prev 2012;13:699 704.
Mishra S, Ahmad S, Kumar N, Sharma BK. Annona muricata (the cancer killer): A review. Glob J Pharma Res 2013;2:1613-8.
Zeng L, Wu FE, Oberlies NH, McLaughlin JL, Sastrodihadjo S. Five new monotetrahydrofuran ring acetogenins from the leaves of Annona muricata. J Nat Prod 1996;59:1035-42.
Moghadamtousi SZ, Karimian H, Rouhollahi E, Paydar M, Fadaeinasab M, Kadir HA. Annona muricata leaves induce G1 cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells. J Ethnopharmacol 2014;156:277-89.
Ezirim AU, Okochi VI, James AB, Adebeshi OA, Ogunnowo S, Odeghe OB. Induction of apoptosis in myelogenous leukemic K562 cells by ethanolic leaf extract of Annona muricata L. Glob J Res Med Plants Indig Med 2013;2:142.
Asare GA, Afriyie D, Ngala RA, Abutiate H, Doku D, Mahmood SA, et al. Antiproliferative activity of aqueous leaf extract of Annona muricata L. On the prostate, BPH-1 cells, and some target genes. Integr Cancer Ther 2015;14:65-74.
Hansra DM, Silva O, Mehta A, Ahn E. Patient with metastatic breast cancer achieves stable disease for 5 years on graviola and xeloda after progressing on multiple lines of therapy. Adv Breast Cancer Res 2014;3:84.
Namita P, Mukesh R, Vijay KJ. Camellia sinensis (green tea): A review. Glob J Pharmacol 2012;6:52-9.
Mahmood T, Akhtar N, Khan BA. The morphology, characteristics, and medicinal properties of Camellia sinensis tea. J Med Plants Res 2010;4:2028-33.
Sumpio BE, Cordova AC, Berke-Schlessel DW, Qin F, Chen QH. Green tea, the Asian paradox,†and cardiovascular disease. J Am Coll Surg 2006;202:813-25.
Rahmani A, Aldebasi YH, Aly SM. Role of green tea and its constituent epigallocatechin-3-gallate in the health management. Int J Pharm Pharm Sci 2015;7:6-12.
Wu AH, Yu MC. Tea, hormone-related cancers and endogenous hormone levels. Mol Nutr Food Res 2006;50:160-9.
Katiyar SK, Ahmad N, Mukhtar H. Green tea and skin. Arch Dermatol 2000;136:989-94.
Smith DM, Dou QP. Green tea polyphenol epigallocatechin inhibits DNA replication and consequently induces leukemia cell apoptosis. Int J Mol Med 2001;7:645-52.
Spinella F, Rosanò L, Decandia S, Di Castro V, Albini A, Elia G, et al. Antitumor effect of green tea polyphenol epigallocatechin-3-gallate in ovarian carcinoma cells: Evidence for the endothelin-1 as a potential target. Exp Biol Med (Maywood) 2006;231:1123-7.
Spinella F, Rosanò L, Di Castro V, Decandia S, Albini A, Nicotra MR, et al. Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Mol Cancer Ther 2006;5:1483-92.
Krawinkel MB, Keding GB. Bitter gourd (Momordica charantia): A dietary approach to hyperglycemia. Nutr Rev 2006;64:331-7.
Nerurkar P, Ray RB. Bitter melon: Antagonist to cancer. Pharm Res 2010;27:1049-53.
Pitchakarn P, Ogawa K, Suzuki S, Takahashi S, Asamoto M, Chewonarin T, et al. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci 2010;101:2234-40.
Agrawal RC, Beohar T. Chemopreventive and anticarcinogenic effects of Momordica charantia extract. Asian Pac J Cancer Prev 2010;11:371-5.
Jilka C, Strifler B, Fortner GW, Hays EF, Takemoto DJ. In vivo antitumor activity of the bitter melon (Momordica charantia). Cancer Res 1983;43:5151-5.
Lee-Huang S, Huang PL, Sun Y, Chen HC, Kung HF, Huang PL, et al. Inhibition of MDA-MB-231 human breast tumor xenografts and HER2 expression by anti-tumor agents GAP31 and MAP30. Anticancer Res 2000;20:653-9.
Li CJ, Tsang SF, Tsai CH, Tsai HY, Chyuan JH, Hsu HY, et al. Momordica charantia extract induces apoptosis in human cancer cells through caspase-and mitochondria-dependent pathways. Evid Based Complement Alternat Med 2012;2012:261971.
Weng JR, Bai LY, Chiu CF, Hu JL, Chiu SJ, Wu CY. Cucurbitane triterpenoid from Momordica charantia induces apoptosis and autophagy in breast cancer cells, in part, through peroxisome proliferator-activated receptor γ activation. Evid Based Complement Alternat Med 2013;2013:935675.
Thakur RS, Puri HS, Hussain A. Major Medicinal Plants of India. Lucknow, India: Central Institute of Medicinal and Aromatic Plants; 1989.
Senthil K, Jayakodi M, Thirugnanasambantham P, Lee SC, Duraisamy P, Purushotham PM, et al. Transcriptome analysis reveals in vitro cultured Withania somnifera leaf and root tissues as a promising source for targeted withanolide biosynthesis. BMC Genomics 2015;16:14.
Yang Z, Garcia A, Xu S, Powell DR, Vertino PM, Singh S, et al. Withania somnifera root extract inhibits mammary cancer metastasis and epithelial to mesenchymal transition. PLoS One 2013;8:e75069.
Devi PU. Withania somnifera dunal (Ashwagandha): Potential plant source of a promising drug for cancer chemotherapy and radiosensitization. Indian J Exp Biol 1996;34:927-32.
Rai M, Jogee PS, Agarkar G, dos Santos CA. Anticancer activities of Withania somnifera: Current research, formulations, and future perspectives. Pharm Biol 2016;54:189-97.
Roy RV, Suman S, Das TP, Luevano JE, Damodaran C. Withaferin A, a steroidal lactone from Withania somnifera, induces mitotic catastrophe and growth arrest in prostate cancer cells. J Nat Prod 2013;76:1909-15.
Nema R, Khare S, Jain P, Pradhan A. Anticancer activity of Withania somnifera (leaves) flavonoids compound. Int J Pharm Sci Rev Res 2013;19:103-6.
Das I, Chakrabarty RN, Das S. Saffron can prevent chemically induced skin carcinogenesis in swiss albino mice. Asian Pac J Cancer Prev 2004;5:70-6.
Gutheil WG, Reed G, Ray A, Anant S, Dhar A. Crocetin: An agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 2012;13:173-9.
Bhandari PR. Crocus sativus L. (saffron) for cancer chemoprevention: A mini review. J Tradit Complement Med 2015;5:81 7.
Samarghandian S, Borji A, Farahmand SK, Afshari R, Davoodi S. Crocus sativus L. (saffron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation. Biomed Res Int 2013;2013:417928.
D’Alessandro AM, Mancini A, Lizzi AR, De Simone A, Marroccella CE, Gravina GL, et al. Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutr Cancer 2013;65:930-42.
Aung HH, Wang CZ, Ni M, Fishbein A, Mehendale SR, Xie JT, et al. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol 2007;29:175.
Chryssanthi DG, Dedes PG, Karamanos NK, Cordopatis P, Lamari FN. Crocetin inhibits invasiveness of MDA-MB-231 breast cancer cells via downregulation of matrix metalloproteinases. Planta Med 2011;77:146-51.
Kapoor LD. Handbook of Ayurvedic Medicinal Plants: Herbal Reference Library. Boca Raton, FL: CRC Press; 2000.
Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol Adv 2014;32:1053-64.
Patil BS, Jayaprakasha GK, Chidambara Murthy KN, Vikram A. Bioactive compounds: Historical perspectives, opportunities, and challenges. J Agric Food Chem 2009;57:8142-60.
Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: A short review. Life Sci 2006;78:2081 7.
Yang JY, Zhong X, Yum HW, Lee HJ, Kundu JK, Na HK, et al. Curcumin inhibits STAT3 signaling in the colon of dextran sulfate sodium-treated mice. J Cancer Prev 2013;18:186-91.
Karunagaran D, Rashmi R, Kumar TR. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets 2005;5:117-29.
Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 1985;29:197-202.
Srivastav S, Singh P, Mishra G, Jha KK, Khosa RL. Achyranthes aspera - An important medicinal plant: A review. J Nat Prod Plant Resour 2011;1:1-4.
Subbarayan PR, Sarkar M, Nagaraja Rao S, Philip S, Kumar P, Altman N, et al. Achyranthes aspera (Apamarg) leaf extract inhibits human pancreatic tumor growth in athymic mice by apoptosis. J Ethnopharmacol 2012;142:523-30.
Subbarayan PR, Sarkar M, Impellizzeri S, Raymo F, Lokeshwar BL, Kumar P, et al. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells. J Ethnopharmacol 2010;131:78-82.
Goyal BR, Goyal RK, Mehta AA. Phyto-pharmacology of Achyranthes aspera: A review. Pharm Rev 2007;1:143.
Joshi KC, Prakash L, Shah RK. Chemical examination of the roots of Tabebuia rosea and heartwood of Oroxylum indicum. Planta Med 1977;31:257-8.
Kamkaen N, Wilkinson JM, Cavanagh HM. Cytotoxic effect of four Thai edible plants on mammalian cell proliferation. Thai Pharma Health Sci J 2006;1:189-95.
Roy MK, Nakahara K, Na Thalang V, Trakoontivakorn G, Takenaka M, Isobe S, et al. Baicalein, a flavonoid extracted from a methanolic extract of Oroxylum indicum inhibits proliferation of a cancer cell line in vitro via induction of apoptosis. Pharm Int J Pharm Sci 2007;62:149-53.
Nakahara K, Onishi-Kameyama M, Ono H, Yoshida M, Trakoontivakorn G. Antimutagenic acitivity against Trp-P-1 of the edible Thai plant, Oroxylum indicum vent. Biosci Biotechnol Biochem 2001;65:2358-60.
Tepsuwan A, Furihata C, Rojanapo W, Matsushima T. Genotoxicity and cell proliferative activity of a nitrosated Oroxylum indicum vent fraction in the pyloric mucosa of rat stomach. Mut Res Lett 1992;281:55-61.
Costa-Lotufo LV, Khan MT, Ather A, Wilke DV, Jimenez PC, Pessoa C, et al. Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J Ethnopharmacol 2005;99:21-30.
Kumar RA, Rajkumar V, Guha G, Mathew L. Therapeutic potentials of Oroxylum indicum bark extracts. Chinese J Nat Med 2010;8:121-6.
Published
How to Cite
Issue
Section
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.