OPTIMUM CONDITIONS FOR N-ACETYL GLUCOSAMINE PRODUCTION FROM TIGER SHRIMP (PENAEUS MONODON) SHELL BY SERRATIA MARCESCENS

Authors

  • Yuniwaty Halim Department of Food Technology, Universitas Pelita Harapan, Jl.M.H. Thamrin Boulevard, Lippo Karawaci, Tangerang 15811, Indonesia. http://orcid.org/0000-0003-2467-9882
  • Hardoko Hardoko Department of Food Technology, Universitas Pelita Harapan, Jl.M.H. Thamrin Boulevard, Lippo Karawaci, Tangerang 15811, Indonesia.
  • Ratna Handayani Department of Food Technology, Universitas Pelita Harapan, Jl.M.H. Thamrin Boulevard, Lippo Karawaci, Tangerang 15811, Indonesia.
  • Vania Lucida Department of Food Technology, Universitas Pelita Harapan, Jl.M.H. Thamrin Boulevard, Lippo Karawaci, Tangerang 15811, Indonesia.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i12.28956

Keywords:

N-acetyl glucosamine, Fermentation, Serratia marcescens, Chitin, Tiger shrimp

Abstract

Objective: The aim of this research was to determine the optimum condition for Serratia marcescens to produce optimum amount of N-acetyl glucosamine using chitin isolated from tiger shrimp (Penaeus monodon) shells.

Methods: This research was conducted using submerged fermentation method. The treatments used were various fermentation temperatures (20, 30, and 37°C), pH (6, 7, and 8), and incubation period (2, 4, 6, and 8 days).

Results: Chitinolytic index of Serratia marcescens was 2.203±0.59 after 2 days of incubation. Optimum temperature for N-acetyl glucosamine production using S. marcescens was at 30°C. Optimum pH and incubation period for N-acetyl glucosamine production were at pH 8 and 6 days of incubation period.

Conclusion: S. marcescens is able to ferment chitin from shrimp shell to produce N-acetyl glucosamine of 41,166.11±4,480.59 mg/l at optimum fermentation condition.

Downloads

Download data is not yet available.

Author Biography

Yuniwaty Halim, Department of Food Technology, Universitas Pelita Harapan, Jl.M.H. Thamrin Boulevard, Lippo Karawaci, Tangerang 15811, Indonesia.

Food Technology Department, Faculty of Science and Technology

References

Ramakrishnan MS, Brooks VV. Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. J Microb Biochem Technol 2013;5:107-29.

Islam M, Masum SM, Rahman MM, Shaikh AA. Preparation of glucosamine hydrochloride from indigenous shrimp processing waste. Bangladesh J Sci Ind Res 2011;46:375-8.

Bunaramrueang P, Attasat S. Optimum conditions for preparation of glucosamine hydrochloride and glucosamine sulfate from shrimp-shell chitin. Int J Appl Sci Technol 2016;6:24-9.

Mirunalini R, Chandrasekaran M, Manimekalai K. Efficacy of chondroitin sulfate with glucosamine versus diacerein in grade II and III osteoarthritis knee: A randomized comparative study. Asian J Pharm Clin Res 2015;8:244-6.

Djunaedi M, Sulaiman SA. The pharmacist’s assessment on patients who consume supplements and herbal while undergoing warfarin therapy. Asian J Pharm Clin Res 2018;11:49-54.

Mojarrad JS, Mahboob N, Valizadeh H, Ansarin M, Bourbour S. Preparation of glucosamine from exoskeleton of shrimp and predicting production yield by response surface methodology. J Agric Food Chem 2007;55:246-50.

Sitanggang AB, Sophia L, Wu HS. Aspects of glucosamine production using microorganisms. Food Res Int 2012;19:393-404.

Chen JK, Shen CR, Liu CL. N-acetylglucosamine: production and applications. Mar Drugs 2010;8:2493-516.

Thirumugan D, Sankari D, Vijayakumar, R. Screening of chitinase production and antifungal activity of Streptomyces sp. ACT 7 from East Coast region, South India. Int J Pharm Pharm Sci 2015;7:38-41.

Krithika S, Chellaram C. Isolation, screening and characterization of chitinase producing bacteria from marine wastes. Int J Pharm Pharm Sci 2016;8:34-6.

Hejazi A, Falniker FR. Serratia marcescens. J Med Microbiol 1997;46:903-12.

Haedar N, Natsir FH, Aryanti W. Production and characterization of chitinase enzyme from chitinolytic bacteria obtained from shells Anadara granosa). Jurnal Alam dan Lingkungan. J of Nat and Envir 2017;8:19-28.

Dubey RC, Maheshwari DK. Practical Microbiology. New Delhi, India: S. Chand and Company Pvt. Ltd.; 2012.

Arif AR, Ischaidar HN, Dali S. Isolasi kitin dari limbah udang putih (Penaeus merguiensis) secara enzimatis. In: Proceedings of Seminar Nasional Kimia Peran Sains dan Teknologi dalam Mendukung Ketahanan Pangan dan Energi Nasional. Makassar, Indonesia: Publisher Hasanuddin University; 2013. p. 10-6.

AOAC. Official Methods of Analysis. USA (Maryland): Association of Official Analytical Chemists; 2005.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.

Dompeipen EJ, Kaimudin M, Dewa RP. Isolation of chitin and chitosan from shrimp shells waste. Majalah Biam 2016;12:32-9.

Czechowska-Biskup R, Jarosinska D, Rokita B, Ulanski P, Rosiak JM. Determination of degree of deacetylation of chitosan-comparison methods. Prog Chem Appl 2012;17:5-20.

Lago MA, de Quirós AR, Sendón R, Sanches-Silva A, Costa HS, Sánchez-Machado DI, et al. Compilation of analytical methods to characterize and determine chitosan, and main applications of the polymer in food active packaging. CyTA J Food 2011;9:319-28.

Setia IN. Chinolytic assay and identification of bacteria isolated from shrimp waste based on 16S rDNA sequences. Ad Microbiol 2015;5:541 8.

Suryadi Y, Priyano TP, Samudra M, Susilowati DN, Lawati N, Kustaman E. Partial purification and characterization of chitinase from entomopathogenic fungus Beauveria bassiana isolate BB200109. J Agro Biogen 2013;9:77-84.

Saskiawan I, Handayani R. Production of N-acetyl-D-glucosamine by submerged fermentation from chitin. Berita Biol 2011;10:292-7.

Ravichandran S, Rameshkumar G, Prince AR. Biochemical composition of shell and flesh of the Indian white shrimp Penaeus indicus (H. Milne Edwards 1837). Am-Eurasian J Sci Res 2009;4:191-4.

Sanusi M. Transformation of chitin from industrial waste isolation of frozen shrimps into chitosan. J Kimia FMIPA 2004;5:28-32.

Tanasale MF, Killay A, Laratmase MS. Kitosan dari limbah kulit kepiting rajungan (Portunus sanginolentus L.) sebagai adsorben zat warna biru metilena. J Nat Indo 2012;14:165-71.

Das S, Ganesh EA. Extraction of chitin from trash crabs (Podophthalmus vigil) by an eccentric method. Curr Res J Biol Sci 2010;2:72-5.

Dompeipen EJ. Isolasi dan identifikasi kitin dan kitosan dari kulit udang windu (Penaeus monodon) dengan spektroskopi inframerah. Majalah Biam 2017;13:31-41.

Díaz-Rojas EI, Argüelles-Monal WM, Higuera-Ciapara I, Hernández J, Lizardi-Mendoza J, Goycoolea FM. Determination of chitin and protein contents during the isolation of chitin from shrimp waste. Macromol Biosci 2006;6:340-7.

Lertsutthiwong P, How NC, Chandrkrachang S, Stevens WF. Effect of chemical treatment on the characteristics of shrimp chitosan. J Metals Mater Miner 2002;12:11-8.

Armenta RE, Guerrero-Legarreta I. Amino acid profile and enhancement of the enzymatic hydrolysis of fermented shrimp carotenoproteins. Food Chem 2009;112:310-5.

Arbia W, Arbia L, Adour L, Amrane A. Chitin recovery using biological methods. Food Technol 2013;51:12-25.

Kasaai MR. Various methods for determination of the degree of N-acetylation of chitin and chitosan: A review. J Agric Food Chem 2009;57:1667-76.

Percot A, Christophe V, Domard A. Optimization of chitin extraction from shrimp shells. Biomacromolecules 2003;4:12-8.

Hapsari F. Pemanfaatan Tepung Cangkang Udang Yang Dihidrolisis Enzim Kasar Kitinase Dalam Pakan Benih Ikan Patin (Pangasionodon hypopthalmus). Bogor, Indonesia: Master Thesis, Bogor Agricultural University; 2013.

Lamine BM, Lamine BM, Bouziane A. Optimisation of the chitinase production by Serratia marcescens DSM 30121T and biological control of locusts. J Biotechnol Biomater 2012;2:133.

Priest FG, Campbell I. Brewing Microbiology. USA: Springer; 2002.

Roberts RL, Cabib E. Serratia marcescens chitinase: One step purification and use for the determination of chitin. Anal Biochem 1982;127:402-12.

Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M. Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 2013;68:71-81.

Zarei M, Saeed A, Zolgharnein H, Safahieh A, Ghoroghi A, Motallebi A, et al. Serratia marcescens B4A chitinase product optimization using Taguchi approach. Iran J Biotechnol 2010;8:52-63.

Ryosuke K, Yoshiharu M, Kazuaki K, Kazuo S. Production of natural-type N-acetyl-D-glucosamine. JP Patent 2002;8:1696.

Pichyangkura R, Kudan S, Kuttiyawang K, Sukwattanasinitt M, Aiba S. Quantitative production of 2-acetoamodo-2-d-glucose from crystalline chitin by bacterial chitinase. Carbohydr Res 2002;337:557-9.

Published

07-12-2018

How to Cite

Halim, Y., H. Hardoko, R. Handayani, and V. Lucida. “OPTIMUM CONDITIONS FOR N-ACETYL GLUCOSAMINE PRODUCTION FROM TIGER SHRIMP (PENAEUS MONODON) SHELL BY SERRATIA MARCESCENS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 12, Dec. 2018, pp. 488-93, doi:10.22159/ajpcr.2018.v11i12.28956.

Issue

Section

Original Article(s)