OPTIMUM CONDITIONS FOR N-ACETYL GLUCOSAMINE PRODUCTION FROM TIGER SHRIMP (PENAEUS MONODON) SHELL BY SERRATIA MARCESCENS
DOI:
https://doi.org/10.22159/ajpcr.2018.v11i12.28956Keywords:
N-acetyl glucosamine, Fermentation, Serratia marcescens, Chitin, Tiger shrimpAbstract
Objective: The aim of this research was to determine the optimum condition for Serratia marcescens to produce optimum amount of N-acetyl glucosamine using chitin isolated from tiger shrimp (Penaeus monodon) shells.
Methods: This research was conducted using submerged fermentation method. The treatments used were various fermentation temperatures (20, 30, and 37°C), pH (6, 7, and 8), and incubation period (2, 4, 6, and 8 days).
Results: Chitinolytic index of Serratia marcescens was 2.203±0.59 after 2 days of incubation. Optimum temperature for N-acetyl glucosamine production using S. marcescens was at 30°C. Optimum pH and incubation period for N-acetyl glucosamine production were at pH 8 and 6 days of incubation period.
Conclusion: S. marcescens is able to ferment chitin from shrimp shell to produce N-acetyl glucosamine of 41,166.11±4,480.59 mg/l at optimum fermentation condition.
Downloads
References
Ramakrishnan MS, Brooks VV. Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. J Microb Biochem Technol 2013;5:107-29.
Islam M, Masum SM, Rahman MM, Shaikh AA. Preparation of glucosamine hydrochloride from indigenous shrimp processing waste. Bangladesh J Sci Ind Res 2011;46:375-8.
Bunaramrueang P, Attasat S. Optimum conditions for preparation of glucosamine hydrochloride and glucosamine sulfate from shrimp-shell chitin. Int J Appl Sci Technol 2016;6:24-9.
Mirunalini R, Chandrasekaran M, Manimekalai K. Efficacy of chondroitin sulfate with glucosamine versus diacerein in grade II and III osteoarthritis knee: A randomized comparative study. Asian J Pharm Clin Res 2015;8:244-6.
Djunaedi M, Sulaiman SA. The pharmacist’s assessment on patients who consume supplements and herbal while undergoing warfarin therapy. Asian J Pharm Clin Res 2018;11:49-54.
Mojarrad JS, Mahboob N, Valizadeh H, Ansarin M, Bourbour S. Preparation of glucosamine from exoskeleton of shrimp and predicting production yield by response surface methodology. J Agric Food Chem 2007;55:246-50.
Sitanggang AB, Sophia L, Wu HS. Aspects of glucosamine production using microorganisms. Food Res Int 2012;19:393-404.
Chen JK, Shen CR, Liu CL. N-acetylglucosamine: production and applications. Mar Drugs 2010;8:2493-516.
Thirumugan D, Sankari D, Vijayakumar, R. Screening of chitinase production and antifungal activity of Streptomyces sp. ACT 7 from East Coast region, South India. Int J Pharm Pharm Sci 2015;7:38-41.
Krithika S, Chellaram C. Isolation, screening and characterization of chitinase producing bacteria from marine wastes. Int J Pharm Pharm Sci 2016;8:34-6.
Hejazi A, Falniker FR. Serratia marcescens. J Med Microbiol 1997;46:903-12.
Haedar N, Natsir FH, Aryanti W. Production and characterization of chitinase enzyme from chitinolytic bacteria obtained from shells Anadara granosa). Jurnal Alam dan Lingkungan. J of Nat and Envir 2017;8:19-28.
Dubey RC, Maheshwari DK. Practical Microbiology. New Delhi, India: S. Chand and Company Pvt. Ltd.; 2012.
Arif AR, Ischaidar HN, Dali S. Isolasi kitin dari limbah udang putih (Penaeus merguiensis) secara enzimatis. In: Proceedings of Seminar Nasional Kimia Peran Sains dan Teknologi dalam Mendukung Ketahanan Pangan dan Energi Nasional. Makassar, Indonesia: Publisher Hasanuddin University; 2013. p. 10-6.
AOAC. Official Methods of Analysis. USA (Maryland): Association of Official Analytical Chemists; 2005.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.
Dompeipen EJ, Kaimudin M, Dewa RP. Isolation of chitin and chitosan from shrimp shells waste. Majalah Biam 2016;12:32-9.
Czechowska-Biskup R, Jarosinska D, Rokita B, Ulanski P, Rosiak JM. Determination of degree of deacetylation of chitosan-comparison methods. Prog Chem Appl 2012;17:5-20.
Lago MA, de Quirós AR, Sendón R, Sanches-Silva A, Costa HS, Sánchez-Machado DI, et al. Compilation of analytical methods to characterize and determine chitosan, and main applications of the polymer in food active packaging. CyTA J Food 2011;9:319-28.
Setia IN. Chinolytic assay and identification of bacteria isolated from shrimp waste based on 16S rDNA sequences. Ad Microbiol 2015;5:541 8.
Suryadi Y, Priyano TP, Samudra M, Susilowati DN, Lawati N, Kustaman E. Partial purification and characterization of chitinase from entomopathogenic fungus Beauveria bassiana isolate BB200109. J Agro Biogen 2013;9:77-84.
Saskiawan I, Handayani R. Production of N-acetyl-D-glucosamine by submerged fermentation from chitin. Berita Biol 2011;10:292-7.
Ravichandran S, Rameshkumar G, Prince AR. Biochemical composition of shell and flesh of the Indian white shrimp Penaeus indicus (H. Milne Edwards 1837). Am-Eurasian J Sci Res 2009;4:191-4.
Sanusi M. Transformation of chitin from industrial waste isolation of frozen shrimps into chitosan. J Kimia FMIPA 2004;5:28-32.
Tanasale MF, Killay A, Laratmase MS. Kitosan dari limbah kulit kepiting rajungan (Portunus sanginolentus L.) sebagai adsorben zat warna biru metilena. J Nat Indo 2012;14:165-71.
Das S, Ganesh EA. Extraction of chitin from trash crabs (Podophthalmus vigil) by an eccentric method. Curr Res J Biol Sci 2010;2:72-5.
Dompeipen EJ. Isolasi dan identifikasi kitin dan kitosan dari kulit udang windu (Penaeus monodon) dengan spektroskopi inframerah. Majalah Biam 2017;13:31-41.
DÃaz-Rojas EI, Argüelles-Monal WM, Higuera-Ciapara I, Hernández J, Lizardi-Mendoza J, Goycoolea FM. Determination of chitin and protein contents during the isolation of chitin from shrimp waste. Macromol Biosci 2006;6:340-7.
Lertsutthiwong P, How NC, Chandrkrachang S, Stevens WF. Effect of chemical treatment on the characteristics of shrimp chitosan. J Metals Mater Miner 2002;12:11-8.
Armenta RE, Guerrero-Legarreta I. Amino acid profile and enhancement of the enzymatic hydrolysis of fermented shrimp carotenoproteins. Food Chem 2009;112:310-5.
Arbia W, Arbia L, Adour L, Amrane A. Chitin recovery using biological methods. Food Technol 2013;51:12-25.
Kasaai MR. Various methods for determination of the degree of N-acetylation of chitin and chitosan: A review. J Agric Food Chem 2009;57:1667-76.
Percot A, Christophe V, Domard A. Optimization of chitin extraction from shrimp shells. Biomacromolecules 2003;4:12-8.
Hapsari F. Pemanfaatan Tepung Cangkang Udang Yang Dihidrolisis Enzim Kasar Kitinase Dalam Pakan Benih Ikan Patin (Pangasionodon hypopthalmus). Bogor, Indonesia: Master Thesis, Bogor Agricultural University; 2013.
Lamine BM, Lamine BM, Bouziane A. Optimisation of the chitinase production by Serratia marcescens DSM 30121T and biological control of locusts. J Biotechnol Biomater 2012;2:133.
Priest FG, Campbell I. Brewing Microbiology. USA: Springer; 2002.
Roberts RL, Cabib E. Serratia marcescens chitinase: One step purification and use for the determination of chitin. Anal Biochem 1982;127:402-12.
Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M. Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 2013;68:71-81.
Zarei M, Saeed A, Zolgharnein H, Safahieh A, Ghoroghi A, Motallebi A, et al. Serratia marcescens B4A chitinase product optimization using Taguchi approach. Iran J Biotechnol 2010;8:52-63.
Ryosuke K, Yoshiharu M, Kazuaki K, Kazuo S. Production of natural-type N-acetyl-D-glucosamine. JP Patent 2002;8:1696.
Pichyangkura R, Kudan S, Kuttiyawang K, Sukwattanasinitt M, Aiba S. Quantitative production of 2-acetoamodo-2-d-glucose from crystalline chitin by bacterial chitinase. Carbohydr Res 2002;337:557-9.
Published
How to Cite
Issue
Section
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.