HEPARAN SULFATE: LANDING SITE FOR THE DENGUE VIRAL STRAINS TO GAIN ENTRY TO THE HOST CELLS

Authors

  • ABDUL GHAYUM PAPULZAI Department of Biotechnology, St. George College of Management and Science, Bengaluru, Karnataka, India.
  • NIKHIYA MANUEL JOHN Department of Biotechnology, St. George College of Management and Science, Bengaluru, Karnataka, India.
  • SUDHAKAR MALLA Department of Biotechnology, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India.

DOI:

https://doi.org/10.22159/ajpcr.2021.v14i11.42536

Keywords:

DENV, Envelope protein, Heparan sulfate, Conserved domains

Abstract

Humans usually contract dengue by being bitten by arthropods, and more than 3.6 billion people are at risk per year. Although studies are conducted to screen and trace out the possible pathophysiology of the virus, an adequate receptor-based study has not been completed. Understanding how the dengue virus (DV) engraves its landing sites requires identification of such cellular receptors. In many model studies, heparan sulfate (HS) has been reported to act as a DV receptor under various conditions. However, the physiological relevance of these findings remains uncertain. Therefore, it is still unclear whether HS is used by viral strains or not, and if at all used by clinical or non-cell culture-adapted strains of DV. The present review aims to identify relevant experimental evidences that confirm the possible interaction between envelope protein and HS chains. We collected data from a series of studies to conclude the interactive role.

Downloads

Download data is not yet available.

References

Gabriel M, Navarro GS, de Borba L, Rossi AH, Gamarnik AV, Estrada LC. Dengue virus capsid protein dynamics reveals spatially heterogeneous motion in live-infected-cells. Sci Rep 2020;10:8751. DOI: https://doi.org/10.1038/s41598-020-65625-6

Iglesias NG, Mondotte JA, Byk LA, de Maio FA, Samsa MM, Alvarez C, et al. Dengue virus uses a non-canonical function of the host GBF1-Arf-COPI system for capsid protein accumulation on lipid droplets. Traffic 2015;16:962-77. DOI: https://doi.org/10.1111/tra.12305

Biswas P, Ganguly S, Debnath B. Dengue fever: Stages, complication, diagnosis, and prevention strategies. Asian J Pharm Clin Res 2021;14:3-11. DOI: https://doi.org/10.22159/ajpcr.2021.v14i5.40960

Chen WB, Maguire T. Nucleotide sequence of the envelope glycoprotein gene of a dengue-2 virus isolated during an epidemic of benign dengue fever in Tonga in 1974. Nucleic Acids Res 1990;18:5889. DOI: https://doi.org/10.1093/nar/18.19.5889

Malacrida L, Hedde PN, Ranjit S, Cardarelli F, Gratton E. Visualization of barriers and obstacles to molecular diffusion in live cells by spatial pair-cross-correlation in two dimensions. Biomed Opt Express 2017;9:303-21. DOI: https://doi.org/10.1364/BOE.9.000303

Acharya D, Paul AM, Anderson JF, Huang F, Bai F. Loss of glycosaminoglycan receptor binding after mosquito cell passage reduces chikungunya virus infectivity. PLoS Negl Trop Dis 2015;9:e0004139. DOI: https://doi.org/10.1371/journal.pntd.0004139

Bacia K, Haustein E, Schwille P. Fluorescence correlation spectroscopy: Principles and applications. Cold Spring Harb Protoc 2014;2014:709-25. DOI: https://doi.org/10.1101/pdb.top081802

Acosta EG, Piccini LE, Talarico LB, Castilla V, Damonte EB. Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in vero or C6/36 cells. Virus Res 2014;184:39-43. DOI: https://doi.org/10.1016/j.virusres.2014.02.011

Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: A systematic analysis. Lancet Infect Dis 2016;16:935-41. DOI: https://doi.org/10.1016/S1473-3099(16)00146-8

Medagama A, Dalugama C, Meiyalakan G, Lakmali D. Risk factors associated with fatal dengue hemorrhagic fever in adults: A case control study. Can J Infect Dis Med Microbiol 2020;2020:1042976. DOI: https://doi.org/10.1155/2020/1042976

Kalyani G, Thanushree N. The dengue vaccines: Assessment of future prospects, treatment, and vaccine challenges. Asian J Pharm Clin Res 2020;13:4-9. DOI: https://doi.org/10.22159/ajpcr.2020.v13i6.37366

Cojandaraj L, Para HS, Tsepal T, Kumari S. Dengue predominance in India: A report. Asian J Pharm Clin Res 2020;13:5-9. DOI: https://doi.org/10.22159/ajpcr.2020.v13i7.37602

He Y, Wang M, Chen S, Cheng A. The role of capsid in the flaviviral life cycle and perspectives for vaccine development. Vaccine 2020;38:6872-81. DOI: https://doi.org/10.1016/j.vaccine.2020.08.053

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL. The global distribution and burden of dengue. Nature 2013;496:504-7. DOI: https://doi.org/10.1038/nature12060

Bhatt P, Sabeena S P and Varma M. Current understanding of the pathogenesis of dengue virus infection. Curr Microbiol 2021;78:17-32. DOI: https://doi.org/10.1007/s00284-020-02284-w

Morando MA, Barbosa GM, Cruz-Oliveira C, da Poian AT, Almeida FC. Dynamics of Zika virus capsid protein in solution: The properties and exposure of the hydrophobic cleft are controlled by the alpha-helix 1 sequence. Biochemistry 2019;58:2488-98. DOI: https://doi.org/10.1021/acs.biochem.9b00194

Cagno V, Andreozzi P, D’Alicarnasso M, Silva PJ, Mueller M, Galloux M, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater 2018;17:195-203. DOI: https://doi.org/10.1038/nmat5053

Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan sulfate proteoglycans and viral attachment: True receptors or adaptation bias? Viruses 2019;11:596. DOI: https://doi.org/10.3390/v11070596

Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa- Lima G, da Poian AT. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 2009;5:e1000632. DOI: https://doi.org/10.1371/journal.ppat.1000632

Tan TY, Fibriansah G, Lok SM. Capsid protein is central to the birth of flavivirus particles. PLoS Pathog 2020;16:e1008542. DOI: https://doi.org/10.1371/journal.ppat.1008542

Cheng CC, Sofiyatun E, Chen WJ, Wang LC. Life as a vector of dengue virus: The antioxidant strategy of mosquito cells to survive viral infection. Antioxidants (Basel) 2021;10:395. DOI: https://doi.org/10.3390/antiox10030395

Kostyuchenko VA, Zhang Q, Tan JL, Ng TS, Lok SM. Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J Virol 2013;13:7700-7. DOI: https://doi.org/10.1128/JVI.00197-13

Chong ZL, Sekaran SD, Soe HJ. Diagnostic accuracy and utility of three dengue diagnostic tests for the diagnosis of acute dengue infection in Malaysia. BMC Infect Dis 2020;20:210. DOI: https://doi.org/10.1186/s12879-020-4911-5

Byk LA, Gamarnik AV. Properties and functions of the dengue virus capsid protein. Annu Rev Virol 2016;3:263-81. DOI: https://doi.org/10.1146/annurev-virology-110615-042334

Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MA, da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev 2015;39:155-70. DOI: https://doi.org/10.1093/femsre/fuu004

Dey D, Poudyal S, Rehman A, Hasan SS. Structural and biochemical insights into flavivirus proteins. Virus Res 2021;296:198343. DOI: https://doi.org/10.1016/j.virusres.2021.198343

Utomo DIS, Pambudi S, Sjatha F, Kato T, Park EY. Production of dengue virus-like particles serotype-3 in silkworm larvae and their ability to elicit a humoral immune response in mice. AMB Express 2020;10:147. DOI: https://doi.org/10.1186/s13568-020-01087-3

Scaturro P, Trist IM, Paul D, Kumar A, Acosta EG, Byrd CM, et al. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J Virol 2014;88:11540-55. DOI: https://doi.org/10.1128/JVI.01745-14

Fahimi H, Mohammadipour M, Kashani HH, Parvini F, Sadeghizadeh M. Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018;102:2977-96.

Martins IC, Gomes-Neto F, Faustino AF, Carvalho FA, Carneiro FA, Bozza PT, et al. The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem J 2012;444:405-15. DOI: https://doi.org/10.1042/BJ20112219

Fahimi H, Mohammadipour M, Haddad Kashani H. Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018;102:2977-96. DOI: https://doi.org/10.1007/s00253-018-8822-y

Flores EB, Bartee MY, Bartee E. Reduced cellular binding affinity has profoundly different impacts on the spread of distinct poxviruses. PLoS One 2020;15:e0231977. DOI: https://doi.org/10.1371/journal.pone.0231977

Yong XE, Palur VR, Anand GS, Wohland T, Sharma KK. Dengue virus 2 capsid protein chaperones the strand displacement of 5’-3’ cyclization sequences. Nucleic Acids Res 2021;49:5832-44. DOI: https://doi.org/10.1093/nar/gkab379

Gopal S. Syndecans in inflammation at a glance. Front Immunol 2020;11:227. DOI: https://doi.org/10.3389/fimmu.2020.00227

Guzman MG, Alvarez M, Halstead SB. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 2013;158:1445-59. DOI: https://doi.org/10.1007/s00705-013-1645-3

Kumar R, Singh N, Abdin MZ, Patel AH, Medigeshi GR. Dengue virus capsid interacts with DDX3X-a potential mechanism for suppression of antiviral functions in dengue infection. Front Cell Infect Microbiol 2018;7:542. DOI: https://doi.org/10.3389/fcimb.2017.00542

Hao C, Xu H, Yu L, Zhang L. Heparin: An essential drug for modern medicine. Prog Mol Biol Transl Sci 2019;163:1-19. DOI: https://doi.org/10.1016/bs.pmbts.2019.02.002

Hidari KI, Suzuki T. Dengue virus receptor. Trop Med Health 2011;39:37-43.

Idrees S, Ashfaq UA. A brief review on dengue molecular virology, diagnosis, treatment and prevalence in Pakistan. Genet Vaccines Ther 2012;10:6. DOI: https://doi.org/10.1186/1479-0556-10-6

Hidari KI, Suzuki T. Dengue virus receptor. Trop Med Health 2011;39 Suppl 4:37-43. DOI: https://doi.org/10.2149/tmh.2011-S03

Lim MQ, Kumaran EA, Tan HC, Lye DC, Leo YS, Ooi EE, et al. Cross-reactivity and anti-viral function of dengue capsid and NS3-specific memory T cells toward zika virus. Front Immunol 2018;9:2225. DOI: https://doi.org/10.3389/fimmu.2018.02225

Kobayashi K, Mizuta K, Koike S. Heparan sulfate attachment receptor is a major selection factor for attenuated enterovirus 71 mutants during cell culture adaptation. PLoS Pathog 2020;16:e1008428. DOI: https://doi.org/10.1371/journal.ppat.1008428

Kreuger J, Kjellén L. Heparan sulfate biosynthesis: Regulation and variability. J Histochem Cytochem 2012;60:898-907. DOI: https://doi.org/10.1369/0022155412464972

Ladner JT, Wiley MR, Prieto K, Yasuda CY, Nagle E, Kasper MR, et al. Complete genome sequences of five Zika virus isolates. Genome Announc 2016;4:e00377-16. DOI: https://doi.org/10.1128/genomeA.00377-16

Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:17023. DOI: https://doi.org/10.1038/sigtrans.2017.23

Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 2015;7:304ra142. DOI: https://doi.org/10.1126/scitranslmed.aaa3863

Okumura M, Matsuura-Miura M, Makino R. Enhancement of guinea pig cytomegalovirus infection by two endogenously expressed components of the pentameric glycoprotein complex in epithelial cells. Sci Rep 2020;10:8530. DOI: https://doi.org/10.1038/s41598-020-65545-5

Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020;5:796-812. DOI: https://doi.org/10.1038/s41564-020-0714-0

Saeed AF, Wang R, Ling S, Wang S. Antibody engineering for pursuing a healthier future. Front Microbiol 2017;8:495. DOI: https://doi.org/10.3389/fmicb.2017.00495

Sharma A, Vasanthapuram RM, Venkataswamy M. Prohibitin 1/2 mediates dengue-3 entry into human neuroblastoma (SH-SY5Y) and microglia (CHME-3) cells. J Biomed Sci 2020;27:55. DOI: https://doi.org/10.1186/s12929-020-00639-w

Shi D, Sheng A, Chi L. Glycosaminoglycan-protein interactions and their roles in human disease. Front Mol Biosci 2021;8:639666. DOI: https://doi.org/10.3389/fmolb.2021.639666

Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. Antibody-dependent enhancement: A challenge for developing a safe dengue vaccine. Front Cell Infect Microbiol 2020;10:572681. DOI: https://doi.org/10.3389/fcimb.2020.572681

Davis DA, Parish CR. Heparan sulfate: A ubiquitous glycosaminoglycan with multiple roles in immunity. Front Immunol 2013;4:470. DOI: https://doi.org/10.3389/fimmu.2013.00470

St John AL, Rathore APS. Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol 2019;19:218-30. DOI: https://doi.org/10.1038/s41577-019-0123-x

Tang TC, Alonso S, Ng LP. Increased serum hyaluronic acid and heparan sulfate in dengue fever: Association with plasma leakage and disease severity. Sci Rep 2017;7:46191. DOI: https://doi.org/10.1038/srep46191

Rivino L, Kumaran EA, Jovanovic V, Nadua K, Teo EW, Pang SW, et al. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J Virol 2013;87:2693-706. DOI: https://doi.org/10.1128/JVI.02675-12

Annaval T, Wild R, Crétinon Y, Sadir R, Vivès RR, Lortat-Jacob H. Heparan sulfate proteoglycans biosynthesis and post synthesis mechanisms combine few enzymes and few core proteins to generate extensive structural and functional diversity. Molecules 2020;25:4215. DOI: https://doi.org/10.3390/molecules25184215

Castilla V, Piccini LE, Damonte EB. Dengue virus entry and trafficking: Perspectives as antiviral target for prevention and therapy. Future Virol 2015;10:625-45. DOI: https://doi.org/10.2217/fvl.15.35

Mii Y, Takada S. Heparan sulfate proteoglycan clustering in wnt signaling and dispersal. Front Cell Dev Biol 2020;8:631. DOI: https://doi.org/10.3389/fcell.2020.00631

Schuurs ZP, Hammond E, Elli S, Rudd TR, Mycroft-West CJ, Lima MA, et al. Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain. Comput Struct Biotechnol J 2021;19:2806-18. DOI: https://doi.org/10.1016/j.csbj.2021.05.002

Lia RA, Lutfan L, Yien LH, Asa H, Kusnanto H, Rocklöv J. Prediction of dengue outbreaks based on disease surveillance and meteorological data. PLoS One 2016;11:1-18. DOI: https://doi.org/10.1371/journal.pone.0152688

Published

07-11-2021

How to Cite

PAPULZAI, A. G., N. M. JOHN, and S. MALLA. “HEPARAN SULFATE: LANDING SITE FOR THE DENGUE VIRAL STRAINS TO GAIN ENTRY TO THE HOST CELLS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 14, no. 11, Nov. 2021, pp. 15-20, doi:10.22159/ajpcr.2021.v14i11.42536.

Issue

Section

Review Article(s)

Most read articles by the same author(s)