NANOPARTICLE AS THE STRATEGY FOR THE DEVELOPMENT OF SARS-COV-2 ANTIVIRAL DRUGS

Authors

  • SRI HARTATI YULIANI Faculty of Pharmacy, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55284, Indonesia

DOI:

https://doi.org/10.22159/ijap.2021v13i5.42604

Keywords:

Nanoparticle, SARS-CoV-2, Antiviral drugs

Abstract

In just a matter of months, SARS-CoV-2 had spread around the world. Scientists collaborate to solve the problem. The development of antiviral drugs is a challenge in itself due to the rapidly changing nature of the virus. Selection of drug candidates can be done quickly through the repurposing drug method. Broad-spectrum antiviral drugs may be strong candidates for SARS-CoV-2 therapy. Nanotechnology is one solution in the development of antiviral drug delivery systems. The advantages possessed by the nanoparticle system can answer the need for an ideal antiviral drug. This article will focus on the development of nanoparticle preparations as a strategy in handling viruses, including SARS-CoV-2.

The selection of article for the current review was searched from specialized databases such as Elsevier, Pubmed, Science Direct, Medscape and other credible databases using the keywords nanoparticle, SARS-CoV-2, Covid-19, drug repurposing, polymeric nanoparticle, micelle, liposome, solid lipid nanoparticle, nanostructured lipid carrier, dendrimer, metallic nanoparticle. The range of articles was 2007–2021.

Downloads

Download data is not yet available.

References

Tarighi P, Eftekhari S, Chizari M, Sabernavaei M, Jafari D, Mirzabeigi P. A review of potential suggested drugs for coronavirus disease (COVID-19) treatment. Eur J Pharmacol 2021;895:173890.

Mukherjee S, Mazumder P, Joshi M, Joshi C, Dalvi SV, Kumar M. Biomedical application, drug delivery and metabolic pathway of antiviral nanotherapeutics for combating viral pandemic: a review. Environ Res 2020;191:110-9.

Carter DC, Wright B, Jerome WG, Rose JP, Wilson E. A unique protein self-assembling nanoparticle with significant advantages in vaccine development and production. J Nanomater 2020. https://doi.org/10.1155/2020/4297937

Huang F, Li Y, Leung ELH, Liu X, Liu K, Wang Q, et al. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol Res 2020;158:104929.

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;180:281–92.

Mehta M, Prasher P, Sharma M, Shastri MD, Khurana N, Vyas M, et al. Advanced drug delivery systems can assist in targeting coronavirus disease (COVID-19): a hypothesis. Med Hypotheses 2020;144:110254.

Lam S, Lombardi A, Ouanounou A. COVID-19: a review of the proposed pharmacological treatments. Eur J Pharmacol 2020;886:1–5.

Alavi M, Asare Addo K, Nokhodchi A. Lectin protein as a promising component to functionalize micelles, liposomes and lipid nps against coronavirus. Biomedicines 2020;8:1–16.

Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discovery 2016;15:327–47.

Chan Y, Ng SW, Mehta M, Anand K, Kumar Singh S, Gupta G, et al. Advanced drug delivery systems can assist in managing influenza virus infection: a hypothesis. Med Hypotheses 2020;144:110298.

Cojocaru FD, Botezat D, Gardikiotis I, Uritu CM, Dodi G, Trandafir L, et al. Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics 2020;12:1–34.

Canta F, Marrone R, Bonora S, D’Avolio A, Sciandra M, Sinicco A, et al. Pharmacokinetics and hepatotoxicity of lopinavir/ritonavir in non-cirrhotic HIV and hepatitis C virus (HCV) co-infected patients. J Antimicrob Chemother 2005;55:280–1.

Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery 2020;6:6–9.

Sahakijpijarn S, Moon C, Koleng JJ, Williams RO. Development of remdesivir as a dry powder for inhalation by thin film freezing. bioRxiv 2020;12:1–28.

Singh M, Kaur R, Rajput R, Agarwal S, Kumar S, Sharma M, et al. Analysis of process and formulation variables on chitosan based losartan potassium nanoparticles: preparation, validation and in vitro release kinetics. Recent Innov Chem Eng (Formerly Recent Patents Chem Eng) 2019;13:41–54.

Sharun K, Shyamkumar TS, Aneesha VA, Dhama K, Pawde AM, Pal A. Current therapeutic applications and pharmacokinetic modulations of ivermectin. Vet World 2019;12:1204–11.

Augustine R, Ashkenazi DL, Arzi RS, Zlobin V, Shofti R, Sosnik A. Nanoparticle-in-microparticle oral drug delivery system of a clinically relevant darunavir/ritonavir antiretroviral combination. Acta Biomater 2018;74:344–59.

Maus A, Strait L, Zhu D. Nanoparticles as delivery vehicles for antiviral therapeutic drugs. Eng Regen 2021;2:31–46.

Joseph SK, MAA, Thomas S, Nair SC. State-of-the-art nanotechnology-based drug delivery strategies to combat covid-19. Int J Appl Pharm 2021;13:18–29.

Li T, Zhang T, Gu Y, Li S, Xia N. Current progress and challenges in the design and development of a successful COVID-19 vaccine. Fundam Res 2021;1:139–50.

Hempel T, Raich L, Olsson S, Azouz NP, Klingler AM, Hoffmann M, et al. Molecular mechanism of inhibiting the SARS-CoV-2 cell entry facilitator TMPRSS2 with camostat and nafamostat. Chem Sci 2021;12:983–92.

Ragia G, Manolopoulos VG. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. Eur J Clin Pharmacol 2020;76:1623–30.

Hoffmann M, Hofmann Winkler H, Smith JC, Kruger N, Arora P, Sorensen LK, et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 2021;65. DOI:10.1101/2020.08.05.237651

Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020;71:732-9.

Uzunova K, Filipova E, Pavlova V, Vekov T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed Pharmacother 2020;131:110668.

Zhang J, Ma X, Yu F, Liu J, Zou F, Pan T, et al. Teocoplanin potently blocks the cell entry of 2019-nCoV. BioRxiv 2020.

Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin Pharmacol Ther 2020;108:242–7.

Khanal P. Remdesivir for COVID-19 treatment: mechanism of action, synthesis, and clinical trials. World J Pharm Pharm Sci 2020;9:1062–8.

Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J Med Virol 2020;92:740–6.

Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020;178:3–6.

Palmer J, Dobrovolny HM, Beauchemin CAA. The in vivo efficacy of neuraminidase inhibitors cannot be determined from the decay rates of influenza viral titers observed in the treated patients. Sci Rep 2017;7:1-12.

Pant S, Singh M, Ravichandiran V, Murty USN, Srivastava HK. Peptide-like and small-molecule inhibitors against covid-19. J Biomol Struct Dyn 2020;39:1–10.

Mahmoud DB, Shitu Z, Mostafa A. Drug repurposing of nitazoxanide: can it be an effective therapy for COVID-19? J Genet Eng Biotechnol 2020;18:35.

Lokhande AS, Devarajan PV. A review on possible mechanistic insights of nitazoxanide for repurposing in COVID-19. Eur J Pharmacol 2021;891:173748.

Kiplin Guy R, DiPaola RS, Romanelli F, Dutch RE. Rapid repurposing of drugs for COVID-19. Science 2020;368:829–30.

Zhou Y, Wang F, Tang J, Nussinov R, Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Heal 2020;2:667–76.

Parvathaneni V, Gupta V. Utilizing drug repurposing against COVID-19–Efficacy, limitations, and challenges. Life Sci 2020;259:118275.

Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with favipiravir for COVID-19:An open-label control study. Engineering 2020;6:1192–8.

Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y, et al. An exploratory randomized controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). medRxiv 2020;1–33. https://doi.org/10.1101/2020.03.19.20038984

Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2:17–71.

Reverchon E, Adami R. Nanomaterials and supercritical fluids. J Supercrit Fluids 2006;37:1–22.

Jahangirian H, Lemraski EG, Webster TJ, Rafiee Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed 2017;12:2957–78.

Din Fud W, Aman A, Ullah I, Qureshi OS, Mustapha O. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 2017;12:7291–309.

Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nano carrier-based approaches on the treatment of degenerative diseases. Int Nano Lett 2017;7:91–122.

Banerjee R. Nanotechnology in drug delivery: present status and a glimpse into the future. Ther Delivery 2018;9:231–2.

Abed SN, Deb PK, Surchi HS, Kokaz SF, Jamal SM, Bandopadhyay S, et al. Nanocarriers in different preclinical and clinical stages. In: Basic fundamentals of drug delivery. Elsevier Inc; 2018. p. 685–731.

Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018;26:64–70.

Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 2016;44:381–91.

Akbarzadeh A, Rezaei Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013;8:1.

Milovanovic M, Arsenijevic A, Milovanovic J, Kanjevac T, Arsenijevic N. Nanoparticles in antiviral therapy. Antimicrob Nanoarchitectonics 2017;383–410. https://doi.org/10.1016/B978-0-323-52733-0.00014-8

Croci R, Bottaro E, Chan KWK, Watanabe S, Pezzullo M, Mastrangelo E, et al. Liposomal systems as nanocarriers for the antiviral agent ivermectin. Int J Biomater 2016. DOI:10.1155/2016/8043983

Yang KC, Lin JC, Tsai HH, Hsu CY, Shih V, Hu CMJ. Nanotechnology advances in pathogen-and host-targeted antiviral delivery: multipronged therapeutic intervention for pandemic control. Drug Delivery Transl Res 2021;11:1420-37.

Serrano G, Kochergina I, Albors A, Diaz E, Oroval M, Hueso G, et al. Liposomal lactoferrin as potential preventative and cure for COVID-19. Int J Res Heal Sci 2020;8:8–15.

Tai TT, Wu TJ, Wu HD, Tsai YC, Wang HT, Wang AM, et al. A strategy to treat COVID-19 disease with targeted delivery of inhalable liposomal hydroxychloroquine: a preclinical pharmacokinetic study. Clin Transl Sci 2021;14:132–6.

Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007;24:1–16.

Lembo D, Cavalli R. Nanoparticulate delivery systems for antiviral drugs. Antivir Chem Chemother 2010;21:53–70.

Sawdon AJ, Peng CA. Polymeric micelles for acyclovir drug delivery. Colloids Surf B 2014;122:738–45.

Baker VS. Acyclovir for SARS-CoV-2: a clinical practice old drug with a new purpose. Clin Pract 2021;18:1584–92.

Craparo EF, Triolo D, Pitarresi G, Giammona G, Cavallaro G. Galactosylated micelles for a ribavirin prodrug targeting to hepatocytes. Biomacromolecules 2013;14:1838–49.

Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in antiviral material development. Chempluschem 2020;85:2105–28.

Govender T, Ojewole E, Naidoo P, Mackraj I. Polymeric nanoparticles for enhancing antiretroviral drug therapy. Drug Delivery 2008;15:493–501.

Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Delivery Transl Res 2020;3:1–40.

Torchilin VP. Multifunctional nanocarriers. Adv Drug Delivery Rev 2012;64 Suppl 1:302–15.

Abo Zeid Y, Garnett MC. Polymer nanoparticle as a delivery system for ribavirin: Do nanoparticle avoid uptake by red blood cells? J Drug Delivery Sci Technol 2020;56:101552.

Wu LS, Rower JE, Burton JR, Anderson PL, Hammond KP, Baouchi Mokrane F, et al. Population pharmacokinetic modeling of plasma and intracellular ribavirin concentrations in patients with chronic hepatitis C virus infection. Antimicrob Agents Chemother 2015;59:2179–88.

Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, et al. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv 2020;10:26777–91.

Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines 2021;9:359.

Basha SK, Dhandayuthabani R, Muzammil MS, Kumari VS. Solid lipid nanoparticles for oral drug delivery. In: Materials Today: Proceedings. Elsevier Ltd; 2020. p. 313–24.

Kiran S, Pindiprolu SS, Phani CS, Sampath V, Golla K. Pulmonary delivery of nanostructured lipid carriers for effective repurposing of salinomycin as an antiviral agent. Med Hypotheses 2020;143:19–22.

Ravi PR, Vats R, Dalal V, Murthy AN. A hybrid design to optimize the preparation of lopinavir-loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation. J Pharm Pharmacol 2014;66:912–26.

Javan F, Vatanara A, Azadmanesh K, Nabi Meibodi M, Shakouri M. Encapsulation of ritonavir in solid lipid nanoparticles: in vitro anti-HIV-1 activity using lentiviral particles. J Pharm Pharmacol 2017;69:1002–9.

Fang CL, A Al-Suwayeh S, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013;7:41–55.

Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: a groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020;10:150–65.

Garcia Pinel B, Porras Alcala C, Ortega Rodriguez A, Sarabia F, Prados J, Melguizo C, et al. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials 2019;9:1–23.

Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Delivery Sci Technol 2019;51:255–67.

Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics 2020;12:228.

Khan AA, Mudassir J, Akhtar S, Murugaiyah V, Darwis Y. Freeze-dried lopinavir-loaded nanostructured lipid carriers for enhanced cellular uptake and bioavailability: statistical optimization, in vitro and in vivo evaluations. Pharmaceutics 2019;11:1–19.

Garg B, Beg S, Kumar R, Katare OP, Singh B. Nanostructured lipidic carriers of lopinavir for effective management of HIV-associated neurocognitive disorder. J Drug Delivery Sci Technol 2019;53:101220.

Franiak Pietryga I, Ziemba B, Messmer B, Skowronska Krawczyk. Dendrimer as drug nanocarriers: the future of gene therapy and targeted therapies in cancer. In: Dendrimer: Fundamental and Applications; 2013. p. 137–44.

Caminade AM, Turrin CO. Dendrimers for drug delivery. J Mater Chem B 2014;23:1–12.

Chauhan AS. Dendrimers for drug delivery. Molecules 2018;23:938.

Nimesh S. Gene therapy. 1st ed. Cambridge, UK: Woodhead Publishing; 2013.

Sandoval Yanez C, Rodriguez CC. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials (Basel) 2020;13:1–20.

Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of dendrimers on the solubility of hydrophobic drug molecules. Front Pharmacol 2017;8:1–23.

Falanga A, Del Genio V, Galdiero S. Peptides and dendrimers: how to combat viral and bacterial infections. Pharmaceutics 2021;13:1–23.

Kandeel M, Al-Taher A, Park BK, Kwon HJ, Al-Nazawi M. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus. J Med Virol 2020;92:1665–70.

Filipezak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in treatment methodologies using dendrimers for Infectious diseases. Molecules 2021;26:1-32.

Li W, Cao Z, Liu R, Liu L, Li H, Li X, et al. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif Cells Nanomed Biotechnol 2019;47:4222–33.

Ahmad MZ, Akhter S, Jain GK, Rahman M, Pathan SA, Ahmad FJ, et al. Metallic nanoparticles: technology overview and drug delivery applications in oncology. Expert Opin Drug Delivery 2010;7:927–42.

Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017;4:105–31.

Maduray K, Parboosing R. Metal nanoparticles: a promising treatment for viral and arboviral infections. Biol Trace Elem Res 2020;7:1-18.

Ajnai G, Chiu A, Kan T, Cheng CC, Tsai TH, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Exp Clin Med 2014;6:172–8.

Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res 2014;13:1169–77.

Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 2017;22:1445.

Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, et al. The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials 2020;10:1–20.

Orlowski P, Tomaszewska E, Gniadek M, Baska P, Nowakowska J, Sokolowska J, et al. Tannic acid-modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One 2014;9:1–15.

Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza a virus. Nanoscale Res Lett 2013;8:93.

Sarkar S. Silver nanoparticles with bronchodilators through nebulisation to treat covid 19 patients. J Curr Med Res Opin 2020;3:449–50.

Published

07-09-2021

How to Cite

YULIANI, S. H. (2021). NANOPARTICLE AS THE STRATEGY FOR THE DEVELOPMENT OF SARS-COV-2 ANTIVIRAL DRUGS. International Journal of Applied Pharmaceutics, 13(5), 33–43. https://doi.org/10.22159/ijap.2021v13i5.42604

Issue

Section

Review Article(s)