INTRANASAL FORMULATION AND CHARACTERIZATION OF CHITOSAN MICROSPHERE FOR IMPROVING IN VITRO MUCOADHESION, RESIDENCE TIME AND ABSORPTION RATE OF PREGABALIN
DOI:
https://doi.org/10.22159/ijap.2023v15i1.46359Keywords:
Chitosan microsphere, Pregabalin, Intranasal, Mucoadhesion, AnticonvulsantAbstract
Objective: Chitosan-based pregabalin microsphere (CBPM) formulation was prepared to improve in vitro mucoadhesion and absorption of pregabalin via intranasal administration.
Methods: The CBPM formulations were prepared using the inotropic gelation method and optimized using the Box-behnken design. The optimized CBPM formulation was physico-chemically characterized using scanning electron microscopy, thermal analysis, Fourier transform infrared spectrometry and powder x-ray diffraction. Additionally, the CBPM formulation was characterized for functional parameters such as in vitro mucoadhesion, in vitro drug release, ex vivo permeability across the sheep nasal mucosa and in vivo anticonvulsant activity in pentylenetetrazol (PTZ)-induced seizures model in mice.
Results: The design-optimized CBPM exhibited a 91.45 % inclusion efficiency of pregabalin in the microspheres. The Physico-chemical analysis of the individual components and the optimized formulation confirmed the formation of CBPM. The in vitro mucoadhesion study revealed ~80% mucoadhesive of the CBPM to the sheep nasal mucosa. The in vitro dissolution profiles of CBPM was significantly higher (~97%) than that of pure pregabalin (~70%). The CBPM displayed a higher rate and extent of permeability (~90%) than pure pregabalin (~76%) across the sheep nasal mucosa. The in vivo anticonvulsant activity showed that intranasal administration of CBPM resulted in significant (P<0.01) protection against PTZ-induced convulsions in mice.
Conclusion: The chitosan-based microsphere intranasal formulation could be employed as promising delivery for rapid pregabalin absorption.
Downloads
References
Kanwar N, Kumar R, Sarwal A, Sinha VR. Preparation and evaluation of floating tablets of pregabalin. Drug Dev Ind Pharm. 2016;42(4):654-60. doi: 10.3109/03639045.2015.1062895. PMID 26146770.
Aydogan E, Comoglu T, Pehlivanoglu B, Dogan M, Comoglu S, Dogan A. Process and formulation variables of pregabalin microspheres prepared by w/o/o double emulsion solvent diffusion method and their clinical application by animal modeling studies. Drug Dev Ind Pharm. 2015;41(8):1311-20. doi: 10.3109/03639045.2014.948452. PMID 25119000.
Gujral RS, Haque SM, Kumar SA. A novel method for the determination of pregabalin in bulk pharmaceutical formulations and human urine samples. Afr J Pharm Pharmacol. 2009 Jun;3(6):327-34.
Ben Manachem E. Pregabalin pharmacology ad its relevance to clinical practice. Epilepsia. 2004 Aug;45(6):13-8. doi: 10.1111/j02213-9580.2004.455003.x.
Bockbrader HN, Radulovic LL, Posvar EL, Strand JC, Alvey CW, Busch JA. Clinical pharmacokinetics of pregabalin in healthy volunteers. J Clin Pharmacol. 2010;50(8):941-50. doi: 10.1177/0091270009352087, PMID 20147618.
Finnerup N. Clinical use of pregabalin in the management of central neuropathic pain. Neuropsychiatr Dis Treat. 2007;Dec 3:3(6):885-91. doi: 10.2147/NDT.S1715.
Arafa MG, Ayoub BM. DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled drug delivery systems. Sci Rep. 2017 Jan 30;7(1):1-15. doi: 10.1038/srep41503.
Fukasawa H, Muratake H, Nagae M, Sugiyama K, Shudo K. Transdermal administration of aqueous pregabalin solution as a potential treatment option for patients with neuropathic pain to avoid central nervous system-mediated side effects. Biol Pharm Bull. 2014;37(11):1816-9. doi: 10.1248/bpb.b14-00278. PMID 25212662.
Jeong KH, Woo HS, Kim CJ, Lee KH, Jeon JY, Lee SY. Formulation of a modified-release pregabalin tablet using hot-melt coating with glyceryl behenate. Int J Pharm. 2015;495(1):1-8. doi: 10.1016/j.ijpharm.2015.08.057. PMID 26315121.
Acikgoz M, Kas HS, Orman M, Hincal AA. Chitosan microspheres of diclofenac sodium: I. Application of factorial design and evaluation of release kinetics. J Microencapsul. 1996;13(2):141-59. doi: 10.3109/02652049609052903, PMID 8999120.
Agnihotri SA, Aminabhavi TM. Controlled release of clozapine through chitosan microparticles prepared by a novel method. J Control Release. 2004;96(2):245-59. doi: 10.1016/j.jconrel.2004.01.025, PMID 15081216.
Martinac A, Filipovic Grcic J, Voinovich D, Perissutti B, Franceschinis E. Development and bioadhesive properties of chitosan-ethylcellulose microspheres for nasal delivery. Int J Pharm. 2005;291(1-2):69-77. doi: 10.1016/j.ijpharm.2004.07.044. PMID 15707733.
Belgamwar VS, Patel HS, Joshi AS, Agrawal A, Surana SJ, Tekade AR. Design and development of nasal mucoadhesive microspheres containing tramadol HCl for CNS targeting. Drug Deliv. 2011;18(5):353-60. doi: 10.3109/10717544.2011.557787, PMID 21351825.
Patel D, Singh S. Chitosan: a multifacet polymer. Int J Curr Pharm. 2015;7(2):21-8.
Nayak UY, Gopal S, Mutalik S, Ranjith AK, Reddy MS, Gupta P. Glutaraldehyde cross-linked chitosan microspheres for controlled delivery of zidovudine. J Microencapsul. 2009 Apr 14;26(3):214-22. doi: 10.1080/02652040802246325, PMID 18819029.
Thanoo BC, Sunny MC, Jayakrishnan A. Cross-linked chitosan microspheres: preparation and evaluation as a matrix for the controlled release of pharmaceuticals. J Pharm Pharmacol. 1992;44(4):283-6. doi: 10.1111/j.2042-7158.1992.tb03607.x. PMID 1355537.
Dhanaraju MD, Elizabeth S, Gunasekaran T. Triamcinolone-loaded glutaraldehyde cross-linked chitosan microspheres: prolonged-release approach for the treatment of rheumatoid arthritis. Drug Deliv. 2011;18(3):198-207. doi: 10.3109/10717544.2010.528069, PMID 21028952.
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139-77. doi: 10.1016/j.jconrel.2018.05.011. PMID 29772289.
Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44-52. doi: 10.1016/j.lfs.2017.12.025. PMID 29277310.
Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021 Aug 12;607:120994. doi: 10.1016/j.ijpharm.2021.120994. PMID 34390810.
Pani NR, Acharya S, Patra S. Development and validation of RP-HPLC method for quantification of glipizide in biological macromolecules. Int J Biol Macromol. 2014 Jan 10;65:65-71. doi: 10.1016/j.ijbiomac.2014.01.007. PMID 24418334.
Jeffery H, Davis SS, O’Hagan DT. The preparation and characterization of poly(lactide-co-glycolide) microparticles. I: Oil-in-water emulsion solvent evaporation. International Journal of Pharmaceutics. 1991;77(2-3):169-75. doi: 10.1016/0378-5173(91)90314-E.
Ararath D, Velmurugan S. Formulation and evaluation of nevirapine mucoadhesive microspheres. Int J Pharm Pharm Sci. 2015;7(6):342-8.
Sahu VK, Sharma N, Sahu PK, Saraf SA. Formulation and evaluation of floating-mucoadhesive microspheres of novel natural polysaccharide for site specific delivery of ranitidine hydrochloride. Int J App Pharm. 2017;9(3):15-9. doi: 10.22159/ijap.2017v9i3.16137.
Velmurugan S, Ashraf MA. Preparation and evaluation of maraviroc mucoadhesive microspheres for gastro retentive drug delivery. Int J Pharm Pharm Sci. 2015;7(5):208-14.
Deshmukh MT, Mohite SK. Formulation and characterization of olanzepineloaded mucoadhesive microspheres. Asian J Pharm Clin Res 2017;10(4):16659. doi: 10.22159/ajpcr.2017.v10i4.16659.
Lal K, Purohit A, Ram H. Glucose homeostatic and pancreas protective potential of tecomella undulata root extract in streptozotocin induced diabetic rats. Asian J Pharm Clin Res. 2017;10(6):17997. doi: 10.22159/ajpcr.2017.v10i6.17997.
Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR. Formulation, optimization and evaluation of spray-dried mucoadhesive microspheres as intranasal carriers for valsartan. J Microencapsul. 2012;29(2):103-14. doi: 10.3109/02652048.2011.630106, PMID 22047546.
Tas C, Ozkan C, Savaser A, Ozkan Y, Tasdemir U, Altunay H. Nasal absorption of metoclopramide from different Carbopol® 981 based formulations: in vitro, ex vivo and in vivo evaluation☆. European Journal of Pharmaceutics and Biopharmaceutics. 2006;64(2):246-54. doi: 10.1016/j.ejpb.2006.05.017.
Kasture VS, Kasture SB, Chopde CT. Anticonvulsive activity of Butea monosperma flowers in laboratory animals. Pharmacol Biochem Behav. 2002;72(4):965-72. doi: 10.1016/S0091-3057(02)00815-8, PMID 12062587.
Serralheiro A, Alves G, Fortuna A, Falcao A. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. Int J Pharm. 2015;490(1-2):39-46. doi: 10.1016/j.ijpharm.2015.05.021, PMID 25979854.
Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34(7):641-78. doi: 10.1016/j.progpolymsci.2009.04.001.
Aramwit P, Ekasit S, Yamdech R. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin. Biomed Microdevices. 2015 Aug 2;17(5):84. doi: 10.1007/s10544-015-9991-4, PMID 26233725.
Pandey R, Khuller GK. Chemotherapeutic potential of alginate-chitosan microspheres as anti-tubercular drug carriers. J Antimicrob Chemother. 2004;53(4):635-40. doi: 10.1093/jac/dkh139, PMID 14998985.
Freitas C, Muller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. International Journal of Pharmaceutics. 1998;168(2):221-9. doi: 10.1016/S0378-5173(98)00092-1.
Kulkarni AD, Bari DB, Surana SJ, Pardeshi CV. In vitro, ex vivo and in vivo performance of chitosan-based spray-dried nasal mucoadhesive microspheres of diltiazem hydrochloride. J Drug Deliv Sci Technol. 2016;31:108-17. doi: 10.1016/j.jddst.2015.12.004.
Mohammed MH, Williams PA, Tverezovskaya O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocoll. 2013;31(2):166-71. doi: 10.1016/j.foodhyd.2012.10.021.
Bhaskarbhai J, Chandra Has Khanduri SBJ. Polymorphic form I of pregabalin and process for its preparation. United States Pat Appl. 2006;1:1-8.
Pardeshi CV, Belgamwar VS. Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability. Int J Biol Macromol. 2016;82:933-44. doi: 10.1016/j.ijbiomac.2015.11.012, PMID 26562548.
Jain SA, Chauk DS, Mahajan HS, Tekade AR, Gattani SG. Formulation and evaluation of nasal mucoadhesive microspheres of sumatriptan succinate. J Microencapsul. 2009;26(8):711-21. doi: 10.3109/02652040802685241, PMID 19888880.
Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981-1014. doi: 10.1016/j.progpolymsci.2011.02.001.
Sahu VK, Sharma N, Sahu PK, Saraf SA. Formulation and evaluation of floating-mucoadhesive microspheres of novel natural polysaccharide for site specific delivery of ranitidine hydrochloride. Int J App Pharm. 2017;9(3):15-9. doi: 10.22159/ijap.2017v9i3.16137.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Dr. Darshan Telange, Dr. Anil Pethe, Ankita Hadke, Dr. Surendra Agrawal
This work is licensed under a Creative Commons Attribution 4.0 International License.