FORMULATION AND EVALUATION OF ASPIRIN-LOADED PLGA NANOPARTICLES FOR OPHTHALMIC USE

Authors

  • ANIL PETHE Datta Meghe College of Pharmacy, Datta Meghe Institute Higher Education and Research (DU), Wardha https://orcid.org/0000-0002-6380-1847
  • ARYA SHANBHAG Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai
  • ATUL SHERJE Bhanuben Nanavati College of Pharmacy, SVKM, Mumbai 400056
  • SURENDRA AGRAWAL Datta Meghe College of Pharmacy, Datta Meghe Institute Higher Education and Research (DU), Wardha https://orcid.org/0000-0002-1149-5307

DOI:

https://doi.org/10.22159/ijap.2023v15i2.46636

Keywords:

Nanoparticles, Ocular, Aspirin, PLGA, Eye diseases

Abstract

Objective: The objective of this work was to increase the bioavailability of Aspirin to the retina by increasing its bioavailability to blood. This was achieved by forming aspirin-loaded PLGA nanoparticles

Methods: Aspirin-loaded PLGA nanoparticles were prepared by a solvent evaporation process. The PLGA was dissolved in the proper solvent and added dropwise to the Aspirin-albumin solution revolving at 3000 rpm. Glutaraldehyde was used as a cross-linker at 20% concentration. The nanoparticles were obtained after passing the solution through HPH and subsequent centrifugation.

Results: The prepared nanoparticles were found to be spherical with the smooth surface as seen in SEM. and with a size of 160.9 nm. Aspirin-loaded PLGA nanoparticles showed in vitro drug release of 71.4 % and ex-vivo permeation of 66.2 %. The formulation was found to be stable for six months.

Conclusion: The developed aspirin-loaded polymeric nanoparticles could be effective for the controlled delivery of aspirin in the early prevention of diabetic retinopathy.

Downloads

Download data is not yet available.

References

Al-Zakwani I, Al-Thuhli M, Al-Hashim A, Al Balushi KA. Drug utilization pattern in an intensive care unit at a tertiary care teaching hospital in Oman. Asian J Pharm Clin Res. 2017;10(2):194-7. doi: 10.22159/ajpcr.2017.v10i2.15148.

Chistiakov DA. Diabetic retinopathy: pathogenic mechanisms and current treatments. Diabetes Metab Syndr. 2011;5(3):165-72. doi: 10.1016/j.dsx.2012.02.025, PMID 22813573.

Kohner EM. Aspirin for diabetic retinopathy. BMJ. 2003;327(7423):1060-1. doi: 10.1136/bmj.327.7423.1060, PMID 14604902.

Tan YL, Ho HK. Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discov Today. 2018;23(5):1108-14. doi: 10.1016/j.drudis.2018.01.051, PMID 29408437.

Jahanshahi M, Mehravar R. Protein nanoparticles as a novel system for food science and technology. Dynam Biochem Process Biotechnol Mol Biol. 2009;3(2):1-11.

Kaushik A, Mazumder R, Padhi S, Mazumder A, Budhori R, Manorma SD. Novel approaches in ocular drug delivery-A revolution. Int J App Pharm. 2022:1-11. doi: 10.22159/ijap.2022v14i3.44045.

Sankar VR, Reddy YD. Nanocochleate-a new approach in lipid drug delivery. Int J Pharm Pharm Sci. 2010;2(4):220-3.

Mittal N, Kaur G. Investigations on polymeric nanoparticles for ocular delivery. Adv Polym Technol. 2019;2019:1-14. doi: 10.1155/2019/1316249.

Tathe A, Ghodke M, Nikalje AP. A brief review: biomaterials and their application. Int J Pharm Pharm Sci. 2010;2(4):19-23.

Perinelli DR, Cespi M, Bonacucina G, Palmieri GF. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. J Pharm Investig. 2019;49(4):443-58. doi: 10.1007/s40005-019-00442-2.

Varela Fernandez R, Garcia Otero X, Diaz Tome V, Regueiro U, Lopez Lopez M, Gonzalez Barcia M. Mucoadhesive PLGA nanospheres and nanocapsules for lactoferrin controlled ocular delivery. Pharmaceutics. 2022;14(4). doi: 10.3390/pharmaceutics14040799, PMID 35456633.

Cai Q, Wang L, Deng G, Liu J, Chen Q, Chen Z. Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am J Transl Res. 2016;8(2):749-64. PMID 27158367.

Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm. 2004;57(2):207-12. doi: 10.1016/j.ejpb.2003.10.018, PMID 15018976.

Yuan L, Guo B, Zhong W, Nie Y, Yao X, Peng X. Interaction of mitoxantrone-loaded cholesterol modified pullulan nanoparticles with human serum albumin and effect on drug release. J Nanomater. 2019;2019:1-13. doi: 10.1155/2019/8036863.

Das J, Debbarma A, Lalhlenmawia H. Formulation and in vitro evaluation of poly-(d, l-lactide-co-glycolide) (plga) nanoparticles of ellagic acid and its effect on human breast cancer, mcf-7 cell line. Int J Curr Pharm Sci. 2021;13:56-62. doi: 10.22159/ijcpr.2021v13i5.1887.

Alkholief M, Albasit H, Alhowyan A, Alshehri S, Raish M, Abul Kalam M. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of acyclovir. Saudi Pharm J. 2019;27(2):293-302. doi: 10.1016/j.jsps.2018.11.011, PMID 30766442.

Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6(2):324-33. doi: 10.1016/j.nano.2009.10.004, PMID 19857606.

De AK, Bera T. Analytical method development, validation and stability studies by RP-HPLC method for simultaneous estimation of andrographolide and curcumin in co-encapsulated nanostructured lipid carrier drug delivery system. Int J App Pharm. 2021;13(5):73-86. doi: 10.22159/ijap.2021v13i5.42181.

Zaghloul N, Mahmoud AA, Elkasabgy NA, El Hoffy NM. PLGA-modified Syloid®-based microparticles for the ocular delivery of terconazole: in vitro and in vivo investigations. Drug Deliv. 2022;29(1):2117-29. doi: 10.1080/10717544.2022.2092239, PMID 35838555.

Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med. 2015;8(10):19670-81. PMID 26770631.

Das B, Sen SO, Maji R, Nayak AK, Sen KK. Transferosomal gel for transdermal delivery of risperidone: formulation optimization and ex vivo permeation. J Drug Deliv Sci Technol. 2017;38:59-71. doi: 10.1016/j.jddst.2017.01.006.

Gebreel RM, Edris NA, Elmofty HM, Tadros MI, El-Nabarawi MA, Hassan DH. Development and characterization of PLGA nanoparticle-laden hydrogels for sustained ocular delivery of norfloxacin in the treatment of pseudomonas keratitis: an experimental study. Drug Des Devel Ther. 2021;15:399-418. doi: 10.2147/DDDT.S293127, PMID 33584095.

Tan F, Cui H, Bai C, Qin C, Xu L, Han J. Preparation, optimization, and transcorneal permeability study of lutein-loaded solid lipid nanoparticles. J Drug Deliv Sci Technol. 2021;62:102362. doi: 10.1016/j.jddst.2021.102362.

Lee J, Kim M, Hong CK, Shim SE. Measurement of the dispersion stability of pristine and surface-modified multi-walled carbon nanotubes in various nonpolar and polar solvents. Meas Sci Technol. 2007;18(12):3707-12. doi: 10.1088/0957-0233/18/12/005.

Dmitrienko A, Chuang Stein C, D’Agostino Sr RB. Pharmaceutical statistics using SAS: a practical guide. SAS Institute; 2007.

Buya AB, Beloqui A, Memvanga PB, Preat V. Self-nano-emulsifying drug-delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics. 2020;12(12):1194. doi: 10.3390/pharmaceutics12121194, PMID 33317067.

Akbari B, Tavandashti MP, Zandrahimi M. Particle size characterization of nanoparticles–a practical approach. Iran J Mater Sci Eng. 2011;8(2):48-56.

Baishya R, Nayak DK, Kumar D, Sinha S, Gupta A, Ganguly S. Ursolic acid loaded PLGA nanoparticles: in vitro and in vivo evaluation to explore tumor targeting ability on B16F10 melanoma cell lines. Pharm Res. 2016;33(11):2691-703. doi: 10.1007/s11095-016-1994-1, PMID 27431865.

Shanthala H, Jayaprakash H, Radhakrishna M, BH JG, PAUL K, Shankar S. Enhancement of solubility and dissolution rate of acetylsalicylic acid via co-crystallization technique: a novel ASA-valine cocrystal. International Journal of Applied Pharmaceutics. 2021:199-205.

Dandamudi M, McLoughlin P, Behl G, Rani S, Coffey L, Chauhan A. Chitosan-coated PLGA nanoparticles encapsulating triamcinolone acetonide as a potential candidate for sustained ocular drug delivery. Pharmaceutics. 2021;13(10). doi: 10.3390/pharmaceutics13101590, PMID 34683883.

Patil N, Bhaskar R, Vyavhare V, Dhadge R, Khaire V, Patil Y. Overview on methods of synthesis of nanoparticles. Int J Curr Pharm Sci. 2021;13(2):11-6. doi: 10.22159/ijcpr.2021v13i2.41556.

Vineeth P, Vadaparthi P, Kumar K, Babu BDJ, Rao AV, Babu KS. Influence of organic solvents on nanoparticle formation and surfactants on release behaviour in vitro using costunolide as model anticancer agent. Int J Pharm Pharm Sci. 2014;6(4):638-45.

Vega E, Gamisans F, Garcia ML, Chauvet A, Lacoulonche F, Egea MA. PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci. 2008;97(12):5306-17. doi: 10.1002/jps.21383, PMID 18425815.

Sah AK, Suresh PK, Verma VK. PLGA nanoparticles for ocular delivery of loteprednol etabonate: a corneal penetration study. Artif Cells Nanomed Biotechnol. 2017;45(6):1-9. doi: 10.1080/21691401.2016.1203794, PMID 27389068.

Jain GK, Pathan SA, Akhter S, Jayabalan N, Talegaonkar S, Khar RK. Microscopic and spectroscopic evaluation of novel PLGA-chitosan Nanoplexes as an ocular delivery system. Colloids Surf B Biointerfaces. 2011;82(2):397-403. doi: 10.1016/j.colsurfb.2010.09.010, PMID 20940097.

Chen W, Fan D, Meng L, Miao Y, Yang S, Weng Y. Enhancing effects of chitosan and chitosan hydrochloride on intestinal absorption of berberine in rats. Drug Dev Ind Pharm. 2012;38(1):104-10. doi: 10.3109/03639045.2011.592531, PMID 21774632.

Published

07-03-2023

How to Cite

PETHE, A., SHANBHAG, A., SHERJE, A., & AGRAWAL, S. (2023). FORMULATION AND EVALUATION OF ASPIRIN-LOADED PLGA NANOPARTICLES FOR OPHTHALMIC USE. International Journal of Applied Pharmaceutics, 15(2), 161–165. https://doi.org/10.22159/ijap.2023v15i2.46636

Issue

Section

Original Article(s)