AN OVERVIEW: DEVELOPMENT OF COLON DRUG DELIVERY SYSTEM AND ITS APPLICATION AND LIMITATIONS
DOI:
https://doi.org/10.22159/ijap.2023v15i1.46681Keywords:
Colon drug delivery system, Colon cancer, Nanoparticles, Colon targeted drug deliveryAbstract
There are various routes of drug administration. Oral administration is considered the most preferred route in drug administration for systemic effects, but the oral administration is not suitable for people with ulcerative colitis, crohn's disease, bowel cancer, diarrhea, treatment of diseases that sensitive to circadian rhythms such as asthma and angina, as well as for steroids administration. The delivery of targeted drugs has the goal of achieving the desired therapeutic profile by delivering the drug to the target site. This study conducted by reviewing related articles based on specify keywords on Science Direct database that has been published for the last 10 y. In recent decades, research has been conducted to develop methods that can target drugs to specific organs. The focusing on targeted drug delivery system to the colon, the various ways that were carried out for its approach, as well as the evaluation. By this study, some challenges in the colon drug delivery system could be overcome along with new approaches.
Downloads
References
Wang QS, Wang GF, Zhou J, Gao LN, Cui YL. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm. 2016;515(1-2):176-85. doi: 10.1016/j.ijpharm.2016.10.002, PMID 27713029.
Laxmi GRP, Srikanth G. Formulation and evaluation of colon specific drug delivery of press coated esomeprazole tablets. J Drug Delivery Ther. 2019;9(1):9-16. doi: 10.22270/ jddt.v9i1.2258.
Lakshmi KR, Muzib YI, Voleti VK. Design and evaluation of colon-specific drug delivery of naproxen sodium using guar gum and crosslinked guar gum. Int J Pharm Pharm Sci. 2012;4:284-8.
Fassihi SC, Talukder R, Fassihi R. Colon-targeted delivery systems for therapeutic applications: drug release from multiparticulate, monolithic matrix, and capsule-filled delivery systems. In: Targeted nanosystems for therapeutic applications: new concepts, dynamic properties, efficiency, and toxicity. ACS Publications; 2019. p. 309-38. doi: 10.1021/bk-2019-1309.ch013.
Ma Z, Ma R, Wang X, Gao J, Zheng Y, Sun Z. Enzyme and PH responsive 5-flurouracil (5-FU) loaded hydrogels based on olsalazine derivatives for colon-specific drug delivery. Eur Polym J. 2019;118:64-70. doi: 10.1016/j.eurpolymj.2019.05.017.
Raghuvanshi NS, Goswami L, Kothiyal P. Various approaches for targeting colon: a review. J Appl Pharm Res. 2014;2(2):01-9.
Litto TM, Shaiju SD, Meenu S. Colon targeted drug delivery:-A review. J Pharm Sci Res. 2020;12(10):1326-31.
Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001 Aug 14;224(1-2):19-38. doi: 10.1016/s0378-5173(01)00720-7, PMID 11472812.
Kotla NG, Rana S, Sivaraman G, Sunnapu O, Vemula PK, Pandit A, et al. Bioresponsive drug delivery systems in intestinal inflammation: state-of-the-art and future perspectives. Adv Drug Deliv Rev. 2019;146:248-66. doi: 10.1016/j.addr.2018.06.021, PMID 29966684.
Bhatt NM, Patel RP. Colon-targeted drug theraphy–A review in primary and novel approach. World J Pharm Res. 2018;7(7):1836-47.
Kaur A, Kaur A, P. Kaur V, Kaur M, Murthy RSR. Polymeric drug delivery approaches for colon targeting: a review. Drug Deliv Lett. 2014;4(1):38-48. doi: 10.2174/22103031113036660017.
Rangari NT, Puranik PK. Review on recent and novel approaches to colon-targeted drug delivery systems;3:20.
Bruschi ML. Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing; 2015.
Prasanth VV, Jayaprakash R, Mathew ST. Colon specific drug delivery systems: a review on various pharmaceutical approaches; 2012.
Purkar PY, Dabir PD. A review on colonic drug delivery system. WJPR. 2018;7:328-47.
Tawfeek HM, Abdellatif AAH, Dennison TJ, Mohammed AR, Sadiq Y, Saleem IY. Colonic delivery of indomethacin-loaded PGA-co-PDL microparticles coated with Eudragit L100-55 from fast disintegrating tablets. Int J Pharm. 2017 Oct 5;531(1):80-9. doi: 10.1016/j.ijpharm.2017.08.069, PMID 28818458, doi: 10.1016/j.ijpharm.2017.08.069.
Aguero L, Zaldivar Silva D, Pena L, Dias ML. Alginate microparticles as oral colon drug delivery device: a review. Carbohydr Polym. 2017;168:32-43. doi: 10.1016/j.carbpol.2017.03.033, PMID 28457455.
Qureshi AM, Momin M, Rathod S, Dev A, Kute C. Colon targeted drug delivery system: a review on current approaches. IJPBR. 2013;1(4):130-47. doi: 10.30750/ijpbr.1.4.24.
Sopyan I, Gozali D, KS IS, Guntina RK. Overview of pectin as an excipient and its use in the pharmaceutical dosage form. Int J App Pharm. 2021;14(4):64-70. doi: 10.22159/ijap.2022v14i4.45091.
Manwar J, Kumbhar DD, Bakal R, Baviskar S, Manmode R. Response surface based co-optimization of release kinetics and mucoadhesive strength for an oral mucoadhesive tablet of cefixime trihydrate. Bull Fac Pharm Cairo Univ. 2016;54(2):227-35. doi: 10.1016/j.bfopcu.2016.06.004.
PA B, Morankar PG, Bedse AP. Colon targeted drug delivery systems. Phys Technol Med. 2013;2(1):230-5.
Qelliny M, Aly U, Elgarhy O, Khaled K. Colon drug delivery systems for the treatment of inflammatory bowel disease. J Adv Biomed Pharm Sci. 2019;2(4):164-84. doi: 10.21608/jabps.2019.14835.1052.
Kraisit P. Impact of hydroxypropyl methylcellulose (HPMC) type and concentration on the swelling and release properties of propranolol hydrochloride matrix tablets usning a simplex centroid design. Int J App Pharm. 2019;11:143-51. doi: 10.22159/ijap.2019v11i2.31127.
Lautenschlager C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev. 2014;71:58-76. doi: 10.1016/j.addr.2013.10.001, PMID 24157534.
Campos E, Branquinho J, Carreira AS, Carvalho A, Coimbra P, Ferreira P. Designing polymeric microparticles for biomedical and industrial applications. Eur Polym J. 2013;49(8):2005-21. doi: 10.1016/j.eurpolymj.2013.04.033.
Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: overview and perspectives. J Control Release. 2016;240:24-37. doi: 10.1016/j.jconrel.2015.10.012, PMID 26458789.
Demetzos C. Application of nanotechnology in imaging and diagnostics. Pharm Nanotechnol. 2016:65-75.
Jakubiak P, Thwala LN, Cadete A, Preat V, Alonso MJ, Beloqui A. Solvent-free protamine nanocapsules as carriers for mucosal delivery of therapeutics. Eur Polym J. 2017;93:695-705. doi: 10.1016/j.eurpolymj.2017.03.049.
Chang D, Lei J, Cui H, Lu N, Sun Y, Zhang X. Disulfide cross-linked nanospheres from sodium alginate derivative for inflammatory bowel disease: preparation, characterization, and in vitro drug release behavior. Carbohydr Polym. 2012;88(2):663-9. doi: 10.1016/j.carbpol.2012.01.020.
Vafaei SY, Esmaeili M, Amini M, Atyabi F, Ostad SN, Dinarvand R. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr Polym. 2016;144:371-81. doi: 10.1016/j.carbpol.2016.01.026, PMID 27083829.
Lee JB, Zgair A, Malec J, Kim TH, Kim MG, Ali J. Lipophilic activated ester prodrug approach for drug delivery to the intestinal lymphatic system. J Control Release. 2018;286:10-9. doi: 10.1016/j.jconrel.2018.07.022, PMID 30016732.
Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2011 Apr;16(7-8):354-60. doi: 10.1016/j.drudis.2010.02.009, PMID 20206289.
Shivhare K, Garg C, Priyam A, Gupta A, Sharma AK, Kumar P. Enzyme sensitive smart inulin-dehydropeptide conjugate self-assembles into nanostructures useful for targeted delivery of ornidazole. Int J Biol Macromol. 2018;106:775-83. doi: 10.1016/j.ijbiomac.2017.08.071, PMID 28818724.
Fan W, Zhu W, Zhang X, Di L. The preparation of curcumin sustained-release solid dispersion by hot melt extrusion-I. Optimization of the Formulation. J Pharm Sci. 2020 Mar 1;109(3):1242-52. doi: 10.1016/j.xphs.2019.11.019, PMID 31809744.
Borba PAA, Pinotti M, de Campos CEM, Pezzini BR, Stulzer HK. Sodium alginate as a potential carrier in solid dispersion formulations to enhance the dissolution rate and apparent water solubility of BCS II drugs. Carbohydr Polym. 2016;137:350-9. doi: 10.1016/j.carbpol.2015.10.070, PMID 26686139.
Song M, Liang Y, Li K, Zhang J, Zhang N, Tian B. Hyaluronic acid modified liposomes for targeted delivery of doxorubicin and paclitaxel to CD44 overexpressing tumor cells with an improved dual-drugs synergistic effect. J Drug Deliv Sci Technol. 2019 Oct 1;53:101179. doi: 10.1016/j.jddst.2019.101179.
Yang H, Wu X, Zhou Z, Chen X, Kong M. Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based transfersomes/microneedle complex for tumor metastasis therapy. Int J Biol Macromol. 2019 Mar 15;125:9-16. doi: 10.1016/j.ijbiomac.2018.11.230, PMID 30500513.
VS L, Menon RB, Raju K, MU A, C Nair S. Formulation and evaluation of lorazepam encapsulated collagen/pectin buccal patch. Int J App Pharm 2019;11:200-9. doi: 10.22159/ijap.2019v11i5.34366.
Gopinath H, Kapudasi R, Shanmuga D, Bhowmik D, Bada PK, Sankar K. Review on, colon-specific drug delivery strategies and in vitro in vivo evaluation. Elixir Pharm. 2013;57:13955-63.
Khan AD, Bajpai M. Floating drug delivery system: an overview. Int J PharmTech Res. 2010;2(4):2497-505.
Naveen NR, Gopinath C, Rao DS. Design expert supported mathematical optimization of repaglinide gastroretentive floating tablets: in vitro and in vivo evaluation. Future J Pharm Sci. 2017 Dec 1;3(2):140-7. doi: 10.1016/j.fjps.2017.05.003.
Published
How to Cite
Issue
Section
Copyright (c) 2023 IYAN SOPYAN, ANITA DEWI PERMATASARI KOMARUDIN, JESSICA ANLIANI HUANG, INSAN SUNAN K. S.
This work is licensed under a Creative Commons Attribution 4.0 International License.