NANOSPONGES: AS A DYNAMIC DRUG DELIVERY APPROACH FOR TARGETED DELIVERY
DOI:
https://doi.org/10.22159/ijap.2023v15i3.46976Keywords:
Nanosponges, Cross-linkers, Controlled release, Topical application, β-cyclo-dextrin and polymersAbstract
Recent advancements in nanotechnology have resulted in improved medicine delivery to the target site. Nanosponges are three-dimensional drug delivery systems that are nanoscale in size and created by cross-linking polymers. The introduction of Nanosponges has been a significant step toward overcoming issues such as drug toxicity, low bioavailability, and predictable medication release. Using a new way of nanotechnology, nanosponges, which are porous with small sponges (below one µm) flowing throughout the body, have demonstrated excellent results in delivering drugs. As a result, they reach the target place, attach to the skin's surface, and slowly release the medicine. Nanosponges can be used to encapsulate a wide range of medicines, including both hydrophilic and lipophilic pharmaceuticals. The medication delivery method using nanosponges is one of the most promising fields in pharmacy. It can be used as a biocatalyst carrier for vaccines, antibodies, enzymes, and proteins to be released. The existing study enlightens on the preparation method, evaluation, and prospective application in a medication delivery system and also focuses on patents filed in the field of nanosponges.
Downloads
References
Srivastava S, Bhargava A. Green nanotechnology: an overview. In: Green nanoparticles: the future of Nanobiotechnology. Berlin: Springer; 2022. doi: 10.1007/978-981-16-7106-7_1.
Nikolova M, Slavchov R, Nikolova G. Nanotechnology in medicine. Drug Discov Eval Methods Clin Pharmacol. 2020:533-46.
Borm PJ. Particle toxicology: from coal mining to nanotechnology. Inhal Toxicol. 2002;14(3):311-24. doi: 10.1080/08958370252809086, PMID 12028820.
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223-30. doi: 10.1021/nl102184c, PMID 20726522.
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl Bio Mater. 2022;5(3):971-1012. doi: 10.1021/acsabm.2c00002, PMID 35226465.
Sadhasivam J, Sugumaran A, Narayanaswamy D. Nano sponges: a potential drug delivery approach. Res J Pharm Technol. 2020;13(7):3442-8. doi: 10.5958/0974-360X.2020.00611.3.
Santos AC, Costa D, Ferreira L, Guerra C, Pereira Silva M, Pereira I. Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Deliv Transl Res. 2021;11(1):49-71. doi: 10.1007/s13346-020-00778-5, PMID 32441011.
Balwe MB. Nanosponge a novel drug delivery system. Res J Pharm Dosage Forms Technol. 2020;12(4):261-6. doi: 10.5958/0975-4377.2020.00043.9.
Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for the transformation of actives. Int J Pharm. 2019;565:333-50. doi: 10.1016/j.ijpharm.2019.05.015, PMID 31082468.
Allahyari S, Trotta F, Valizadeh H, Jelvehgari M, Zakeri Milani P. Cyclodextrin-based nanosponges as promising carriers for active agents. Expert Opin Drug Deliv. 2019;16(5):467-79. doi: 10.1080/17425247.2019.1591365, PMID 30845847.
Shringirishi M, Prajapati SK, Mahor A, Alok S, Yadav P, Verma A. Nanosponges: a potential nanocarrier for novel drug delivery-a review. Asian Pac J Trop Dis. 2014;4:S519-26. doi: 10.1016/S2222-1808(14)60667-8.
Bano N, Ray SK, Shukla T, Upmanyu N, Khare R, Pandey SP. Multifunctional nanosponges for the treatment of various diseases: a review. Asian J Pharm Pharmacol. 2019;5(2):235-48. doi: 10.31024/ajpp.2019.5.2.4.
Jilsha G, Nanosponges VV. A novel approach of drug delivery system. Int J Pharm Sci Rev Res. 2013;19(2):119-23.
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine-challenge and perspectives. Angew Chem Int Ed Engl. 2009;48(5):872-97. doi: 10.1002/anie.200802585, PMID 19142939.
Oppermann H, Dietrich L. Nanoporous gold bumps for low temperature bonding. Microelectron Reliab. 2012;52(2):356-60. doi: 10.1016/j.microrel.2011.06.027.
Jilsha G, Nanosponges VV. A novel approach of drug delivery system. Int J Pharm Sci Rev Res. 2013;19(2):119-23.
JA, Girigoswami A, Girigoswami K. Versatile applications of nanosponges in the biomedical field: a glimpse on SARS-CoV-2 management. Bionanoscience. 2022;12(3):1018-31. doi: 10.1007/s12668-022-01000-1, PMID 35755139.
Hengge UR, Ruzicka T, Schwartz RA, Cork MJ. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol. 2006;54(1):1-15. doi: 10.1016/j.jaad.2005.01.010, PMID 16384751.
Shoaib Q, Abbas N, Irfan M, Hussain A, Arshad MS, Hussain SZ. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Trop J Pharm Res. 2018;17(8):1465-4. doi: 10.4314/tjpr.v17i8.2.
Rajam RP, Muthukumar KR. An updated comprehensive review on nanosponges–novel emerging drug delivery system. Res J Pharm Technol. 2021;14(8):4476-84. doi: 10.52711/0974-360X.2021.00778.
Richhariya N, Prajapati SK, Sharma UK. Nanosponges: an innovative drug delivery system. World J Pharm Res. 2015;4(7):1751-3.
Praveen K, Balamurugan K. Targeted drug delivery through nanosponges and its approach. Res J Pharm Technol. 2020;13(7):3524-9. doi: 10.5958/0974-360X.2020.00624.1.
Ahmed RZ, Patil G, Zaheer Z. Nanosponges–a completely new nano-horizon: pharmaceutical applications and recent advances. Drug Dev Ind Pharm. 2013;39(9):1263-72. doi: 10.3109/03639045.2012.694610, PMID 22681585.
Crini G, Torri G, Lichtfouse E, Kyzas GZ, Wilson LD, Morin Crini N. Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environ Chem Lett. 2019;17(4):1645-66. doi: 10.1007/s10311-019-00903-y.
Dokarimare NA, Lande AD, Wadher KJ, Umekar MJ. Nanosponge as a novel carrier system: applications and emerging trends. Scho Acad J Pharm. 2019;8(12):520-6. doi: 10.36347/SAJP.2019.v08i12.001.
Rubin Pedrazzo A, Trotta F, Hoti G, Cesano F, Zanetti M. Sustainable mechanochemical synthesis of β-cyclodextrin polymers by twin screw extrusion. Environ Sci Pollut Res Int. 2022;29(1):251-63. doi: 10.1007/s11356-021-15187-5, PMID 34424473.
SS, SA, Krishnamoorthy K, Rajappan M. Nanosponges: a novel class of drug delivery system–review. J Pharm Pharm Sci. 2012;15(1):103-11. doi: 10.18433/j3k308. PMID 22365092.
Wadhwa A, Mathura V, Lewis SA. Emerging novel nanopharmaceuticals for drug delivery. Asian J Pharm Clin Res. 2018;11(7):35-2. doi: 10.22159/ajpcr.2018.v11i7.25149.
Zidan MF, Ibrahim HM, Afouna MI, Ibrahim EA. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium. Drug Dev Ind Pharm. 2018;44(8):1243-53. doi: 10.1080/03639045.2018.1442844, PMID 29452493.
Tiwari K, Bhattacharya S. The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications. J Mater Sci Mater Med. 2022;33(3):28. doi: 10.1007/s10856-022-06652-9, PMID 35244808.
Shoaib Q, Abbas N, Irfan M, Hussain A, Arshad MS, Hussain SZ. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Trop J Pharm Res. 2018;17(8):1465-4. doi: 10.4314/tjpr.v17i8.2.
Dadol GC, Kilic A, Tijing LD, Lim KJA, Cabatingan LK, Tan NPB. Solution blow spinning (SBS) and SBS-spun nanofibers: materials, methods, and applications. Mater Today Commun. 2020;25:101656. doi: 10.1016/j.mtcomm.2020.101656.
Galli M, Rossotti B, Maggioni D, Ferretti AM, Ferruti P, Ranucci E. A new catechol-functionalized poly (amidoamine) as an effective nanoparticle stabilizer. Milan Polym Days. 2017:83-3.
Tarannum N, Suhani D, Kumar D. Synthesis, characterization and applications of copolymer of β–cyclodextrin: a review. J Polym Res. 2020;27(4):1-30. doi: 10.1007/s10965-020-02058-9.
Shrestha S, Bhattacharya S. Versatile use of nanosponge in the pharmaceutical arena: a mini-review. Recent Pat Nanotechnol. 2020;14(4):351-9. doi: 10.2174/1872210514999200901200558, PMID 32875993.
Morgan PW, Kwolek SL. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. J Polym Sci. 1959;40(137):299-327. doi: 10.1002/pol.1959.1204013702.
Zhang Q, Xu TY, Zhao CX, Jin WH, Wang Q, Qu DH. Dynamic self‐assembly of gold/polymer nanocomposites: pH‐encoded switching between 1D nanowires and 3D nanosponges. Chem Asian J. 2017;12(19):2549-53. doi: 10.1002/asia.201701119, PMID 28810054.
Mahmoudi M, Shokrgozar MA, Simchi A, Imani M, Milani AS, Stroeve P. Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol). J Phys Chem C. 2009;113(6):2322-31. doi: 10.1021/jp809453v.
Bachkar BA, Gadhe LT, Battase P, Mahajan N, Wagh R, Talele S. Nanosponges: a potential nano-carrier for targeted drug delivery. World J Pharm Res. 2015;4(3):751-68.
Shringirishi M, Prajapati SK, Mahor A, Alok S, Yadav P, Verma A. Nanosponges: a potential nanocarrier for novel drug delivery-a review. Asian Pac J Trop Dis. 2014;4:S519-26. doi: 10.1016/S2222-1808(14)60667-8.
Shivani S, Poladi KK. Nanosponges-novel emerging drug delivery system: a review. Int J Pharm Sci Res. 2015;6(2):529.
Osmani RA, Hani UR, Bhosale RR, Kulkarni PK, Shanmuganathan S. Nanosponge carriers-an archetype swing in cancer therapy: a comprehensive review. Curr Drug Targets. 2017;18(1):108-18. doi: 10.2174/1389450116666151001105449, PMID 26424399.
Bano N, Ray SK, Shukla T, Upmanyu N, Khare R, Pandey SP. Multifunctional nanosponges for the treatment of various diseases: a review. Asian J Pharm Pharmacol. 2019;5(2):235-48. doi: 10.31024/ajpp.2019.5.2.4.
Gedam SS, Basarkar GD. Nanosponges: an attractive strategy for an enhanced therapeutic profile. J Pharm Sci Res. 2019;11(6):2479-87.
Gupta S, Bansal R, Gupta S, Jindal N, Jindal A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol Online J. 2013;4(4):267-72. doi: 10.4103/2229-5178.120635, PMID 24350003.
Panda S, Vijayalakshmi SV, Pattnaik S, Swain RP. Nanosponges: a novel carrier for targeted drug delivery. Int J Pharm Technol, (Research). 2015;8:213-24.
Deng J, Chen QJ, Li W, Zuberi Z, Feng JX, Lin QL. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: recent progress from a material and drug delivery. J Mater Sci. 2021;56(10):5995-6015. doi: 10.1007/s10853-020-05646-8.
Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release. 2013;170(1):15-40. doi: 10.1016/j.jconrel.2013.04.020, PMID 23648832.
Shende PK, Trotta F, Gaud RS, Deshmukh K, Cavalli R, Biasizzo M. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J Incl Phenom Macrocycl Chem. 2012;74(1-4):447-54. doi: 10.1007/s10847-012-0140-x.
Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for the transformation of actives. Int J Pharm. 2019;565:333-50. doi: 10.1016/j.ijpharm.2019.05.015, PMID 31082468.
Schneider HJ, Werner F, Blatter T. Attractive interactions between negative charges and polarizable aryl parts of host–guest systems. J Phys Org Chem. 1993;6(10):590-4. doi: 10.1002/poc.610061010.
Sharma A, Thakur R, Sharma R. Development and optimization of candesartan cilexetil nasal gel for accentuated intranasal delivery using central composite design. Mater Today Proc. 2022. doi: 10.1016/j.matpr.2022.11.221.
Kumar S, Rao R. Analytical tools for cyclodextrin nanosponges in the pharmaceutical field: a review. J Incl Phenom Macrocycl Chem. 2019;94(1-2):11-30. doi: 10.1007/s10847-019-00903-z.
Carneiro SB, Costa Duarte FI, Heimfarth L, Siqueira Quintans JS, Quintans-Júnior LJ, Veiga Júnior VFD. Cyclodextrin drug inclusion complexes: in vivo and in vitro approaches. Int J Mol Sci. 2019;20(3):642. doi: 10.3390/ijms20030642, PMID 30717337.
Sehgal N, Gupta V, Kanna S. A review on nanosponges: a boon to targeted drug delivery for anticancer drug. Asian J Pharm Clin Res. 2019;12(7):1-7.
Sharma A, Singh AP, Harikumar SL. Development and optimization of nanoemulsion-based gel for enhanced transdermal delivery of nitrendipine using box-behnken statistical design. Drug Dev Ind Pharm. 2020;46(2):329-42. doi: 10.1080/03639045.2020.1721527, PMID 31976777.
Sharma A, Harikumar SL. Qualiy by design approach for development and optimization of nitrendipine loaded niosomal gel for accentuated transdermal delivery. Int J Appl Pharm. 2020;12(5):181-9.
Jain A, Prajapati SK, Kumari A, Mody N, Bajpai M. Engineered nanosponges as versatile biodegradable carriers: an insight. J Drug Deliv Sci Technol. 2020;57:101643. doi: 10.1016/j.jddst.2020.101643.
Rao BN, Reddy KR, Fathima SR, Preethi P. Design, development and evaluation of diltiazem hydrochloride loaded nanosponges for oral delivery. Int J Curr Pharm Sci. 2020;12(5):116-22. doi: 10.22159/ijcpr.2020v12i5.39784, doi: 10.22159/ijcpr.2020v12i5.39784.
Agarwal S, Thakur A, Sharma A. Development and evaluation of ketoprofen loaded floating microspheres for sustained delivery. Mater Today Proc. 2022;68:647-52. doi: 10.1016/j.matpr.2022.05.299.
Sharma A, Sharma R, Singh Bora KS, Harikumar SL. Pharmacokinetic investigation of nitrendipine encapsulated niosomal gel in rat plasma by RP-HPLC method. Mater Today Proc. 2022;68:653-7. doi: 10.1016/j.matpr.2022.05.301.
Trotta F, Caldera F, Cavalli R, Soster M, Riedo C, Biasizzo M. Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-dopa: perspectives for the treatment of Parkinson’s disease. Expert Opin Drug Deliv. 2016;13(12):1671-80. doi: 10.1080/17425247.2017.1248398, PMID 27737572.
Suresh C, Abhishek S. pH sensitive in situ ocular gel: a review. J Pharm Sci Bioscienti Res. 2016;6(5):684-94.
Sharma A, Thakur R, Sharma R. Development and optimization of candesartan cilexetil nasal gel for accentuated intranasal delivery using central composite design materials today. Proceedings. 2022. doi: 10.1016/j.matpr.2022.11.221.
Shringirishi M, Mahor A, Gupta R, Prajapati SK, Bansal K, Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: an in vitro and in vivo evaluation. J Drug Deliv Sci Technol. 2017;41:344-50. doi: 10.1016/j.jddst.2017.08.005.
Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech. 2011;12(1):279-86. doi: 10.1208/s12249-011-9584-3, PMID 21240574.
Arvapally S. Formulation and in vitro evaluation of glipizide nanosponges. Am J Pharm Tech Res. 2017;7(3):341-61.
Momin MM, Zaheer Z, Zainuddin R, Sangshetti JN. Extended-release delivery of erlotinib glutathione nanosponge for targeting lung cancer. Artif Cells Nanomed Biotechnol. 2018;46(5):1064-75. doi: 10.1080/21691401.2017.1360324, PMID 28758795.
Wang J, Wang H, Wang H, He S, Li R, Deng Z. Nonviolent self-catabolic dnazyme nanosponges for smart anticancer drug delivery. ACS Nano. 2019;13(5):5852-63. doi: 10.1021/acsnano.9b01589, PMID 31042356.
Iriventi P, Gupta NV, Osmani RAM, Balamuralidhara V. Design and development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. Daru. 2020;28(2):489-506. doi: 10.1007/s40199-020-00352-x, PMID 32472531.
Varan C, Anceschi A, Sevli S, Bruni N, Giraudo L, Bilgic E. Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. Int J Pharm. 2020;585:119485. doi: 10.1016/j.ijpharm.2020.119485. PMID 32497732.
Zhang Q, Honko A, Zhou J, Gong H, Downs SN, Vasquez JH. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 2020;20(7):5570-4. doi: 10.1021/acs.nanolett.0c02278. PMID 32551679.
Kaur M, Nagpal M, Singh M, Singh TG, Aggarwal G, Dhingra GA. Improved antibacterial activity of topical gel based on nanosponge carrier of cinnamon oil. BioImpacts. 2021;11(1):23-31. doi: 10.34172/bi.2021.04, PMID 33469505.
Daga M, de Graaf IAM, Argenziano M, Barranco ASM, Loeck M, Al-Adwi Y. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: evaluation of toxicity and transport mechanisms in the liver. Toxicol In Vitro. 2020;65:104800. doi: 10.1016/j.tiv.2020.104800. PMID 32084521.
Ahmed MM, Fatima F, Anwer MK, Ibnouf EO, Kalam MA, Alshamsan A. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection. Saudi Pharm J. 2021;29(5):467-77. doi: 10.1016/j.jsps.2021.04.010, PMID 34135673.
Almutairy BK, Alshetaili A, Alali AS, Ahmed MM, Anwer MK, Aboudzadeh MA. Design of olmesartan medoxomil-loaded nanosponges for hypertension and lung cancer treatments. Polymers (Basel). 2021;13(14):2272. doi: 10.3390/polym13142272, PMID 34301030.
Yang J, Zhang X, Liu C, Wang Z, Deng L, Feng C. Biologically modified nanoparticles as theranostic bionanomaterials. Prog Mater Sci. 2021;118:100768. doi: 10.1016/j.pmatsci.2020.100768.
Khatoon S, Kalam N, Shaikh MF, Hasnain MS, Hafiz AK, Ansari MT. Nanoencapsulation of polyphenols as drugs and supplements for enhancing therapeutic profile–a review. Curr Mol Pharmacol. 2022;15(1):77-107. doi: 10.2174/1874467214666210922120924, PMID 34551693.
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: the status and perspectives in delivery points of view. Adv Drug Deliv Rev. 2021;170:1-25. doi: 10.1016/j.addr.2020.12.011. PMID 33359141.
Baghel M, Sailaja I, Shaker IA. Nanotechnology: a curative approach to combat HIV-AIDS. Int J Curr Res Rev. 2020;12(19):149-61. doi: 10.31782/IJCRR.2020.121910.
Tarbet EB, Larson D, Anderson BJ, Bailey KW, Wong MH, Smee DF. Evaluation of imiquimod for topical treatment of vaccinia virus cutaneous infections in immunosuppressed hairless mice. Antiviral Res. 2011;90(3):126-33. doi: 10.1016/j.antiviral.2011.03.181, PMID 21439326.
Akhtar N, Verma A, Pathak K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr Pharm Des. 2015;21(20):2892-913. doi: 10.2174/1381612821666150428150456, PMID 25925110.
Yakavets I, Guereschi C, Lamy L, Kravchenko I, Lassalle HP, Zorin V. Cyclodextrin nanosponge as a temoporfin nanocarrier: balancing between accumulation and penetration in 3D tumor spheroids. Eur J Pharm Biopharm. 2020;154:33-42. doi: 10.1016/j.ejpb.2020.06.022, PMID 32634570.
Ghurghure SM, Pathan MA, Surwase PR. Nanosponges: A novel approach for targeted drug delivery system. Int J Chem Stud. 2018;2(6):15-23.
Day CM, Hickey SM, Song Y, Plush SE, Garg S. Novel tamoxifen nanoformulations for improving breast cancer treatment: old wine in new bottles. Molecules. 2020;25(5):1182. doi: 10.3390/molecules25051182, PMID 32151063.
Bezerra FM, Lis MJ, Firmino HB, Dias da Silva JG, Curto Valle RCS, Borges Valle JA. The role of β-cyclodextrin in the textile industry-review. Molecules. 2020;25(16):3624. doi: 10.3390/molecules25163624, PMID 32784931.
Mohiuddin AK. Skin care creams: formulation and use. Dermatol Clin Resour. 2019;5(1):238-71.
Perez Esteve E, Bernardos A, Martínez Manez R, Barat JM. Nanotechnology in the development of novel functional foods or their package. An overview based in patent analysis. Recent Pat Food Nutr Agric. 2013;5(1):35-43. doi: 10.2174/2212798411305010006, PMID 22963076.
Dorato MA, Engelhardt JA. The no-observed-adverse-effect-level in drug safety evaluations: use, issues, and definition(s). Regul Toxicol Pharmacol. 2005;42(3):265-74. doi: 10.1016/j.yrtph.2005.05.004. PMID 15979222.
Omar SM, Ibrahim F, Ismail A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm J. 2020;28(3):349-61. doi: 10.1016/j.jsps.2020.01.016, PMID 32194337.
Khairnar A, Shelke S, Rathod V, Kalawane Y, Jagtap A. Review on antihyperlipedemia lipophilic drugs and their novel formulation approaches. Int J Pharm Pharm Sci. 2017;9(9):1-8. doi: 10.22159/ijpps.2017v9i9.19301.
Bafor EE, Igbinuwen O. Acute toxicity studies of the leaf extract of Ficus exasperata on haematological parameters, body weight and body temperature. J Ethnopharmacol. 2009;123(2):302-7. doi: 10.1016/j.jep.2009.03.001. PMID 19429376.
Kumar S, Pooja, Trotta F, Rao R, Kumar S, Pooja, Trotta F, Rao R. Encapsulation of babchi oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics. 2018;10(4):169. doi: 10.3390/pharmaceutics10040169, PMID 30261580.
Hamad DD, Hussein RM, Salih M, Qader AF, Ali DO. Effect of covid-19 on biochemical parameter, electrolyte disturbances and immune biomarkers in humans. J Crit Rev. 2021;8(3):448-54.
Published
How to Cite
Issue
Section
Copyright (c) 2023 PANKAJ SHARMA, ABHISHEK SHARMA, AVNEET GUPTA
This work is licensed under a Creative Commons Attribution 4.0 International License.