FORMULATION, ANALYSIS AND VALIDATION OF NANOSUSPENSIONS-LOADED VORICONAZOLE TO ENHANCE SOLUBILITY
DOI:
https://doi.org/10.22159/ijap.2024v16i2.49591Keywords:
Design-expert® software, Voriconazole, Solvent/anti-solvent technique, NanosuspensionsAbstract
Objective: This study aimed to enhance the solubility of voriconazole (VRZ) via loading to nanosuspensions using solvent/anti-solvent technique. The optimisation of independent variables (polymer concentrations) was carried out to achieve the desired particle size and maximise the percentage of entrapment efficiency (EE %) and drug loading (DL %) using design-expert®software.
Methods: Design-Expert® software, version 13, was used to design and optimise nanosuspensions-loaded VRZ using 23 factorial designs. Concentrations of polyvinylpyrrolidone, hydroxypropyl methylcellulose and poloxamers were selected as independent variables to achieve ideal particle size, polydispersity index (PDI), entrapment efficacy (EE %) and drug loading (DL %). Atomic force microscopy (AFM), differential scanning calorimetry (DSC) and saturated solubility were used to assess the lyophilized nanoparticles. The compatibility between the drug and the polymers was studied using Fourier transform infrared spectroscopy (FTIR).
Results: The particle size, PDI, EE %, and DL % were in the range of 15.6–145.6 nm, 0.010-0.120, 55.9 %-91.9 %, and 6.68-36.76 %, respectively. The saturated solubility of nanosuspensions-loaded VRZ (NS-VRZ) relative to free VRZ was increased tenfold in DW and twelvefold in PBS (pH 7.4). DSC thermogram confirmed the incorporation of VRZ in the nanosuspensions. The AFM of NS-VRZ validated spherical tiny particle size with a smooth surface. There is no chemical interaction between VRZ and the polymers, according to an FTIR investigation.
Conclusion: The solubility of VRZ was successfully enhanced by loading to nanosuspensions. The solvent/anti-solvent technique was proven to be cost-effective, easy to operate and suitable for the preparation of NS-VRZ using Design-Expert®software.
Downloads
References
Chen L, Wang Y, Zhang J, Hao L, Guo H, Lou H. Bexarotene nanocrystal-oral and parenteral formulation development, characterization and pharmacokinetic evaluation. Eur J Pharm Biopharm. 2014;87(1):160-9. doi: 10.1016/j.ejpb.2013.12.005, PMID 24333772.
Bonthagarala B, Lakshmi Sai PD, K VS, G AK, Rao BN, Dasari V. Enhancement of dissolution rate of clofibrate BCS Class–II drug by using liquisolid compact technology. Int J Biomed Adv Res 2015;6(3):228. doi: 10.7439/ijbar.v6i3.1891.
Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomedicine. 2021;16:1313-30. doi: 10.2147/IJN.S289443, PMID 33628022.
AlEdresi SS, Alshaibani AJ, Abood AN. Enhancing the loading capacity of kojic acid dipalmitate in liposomes. Lat Am J Pharm. 2020;39(7):1-7.
Albo Hamrah KTK, Al-Shaibani AJN, Al-Edresi SS, Al-Gburi KMH. AA comparative study of quality control testing on candesartan cilexetil conventional tablets in iraq. Int J App Pharm. 2020;12(2):103-8. doi: 10.22159/ijap.2020v12i2.36220.
Bhakay A, Rahman M, Dave RN, Bilgili E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: formulation processing aspects and challenges. Pharmaceutics. 2018;10(3):1-62. doi: 10.3390/pharmaceutics10030086, PMID 29986543.
Aledresi SS, Abdulrazza IF, Alshaibani AJ. Enhancing the solubility of nimesulide by loading to a nanoemulsion. Lat Am J Pharm. 2020;39(11):2299-308.
Al-Hamadani MH, Al-Edresi S. Formulation and characterization of hydrogel of proniosomes loaded diclofenac sodium. Int J Drug Deliv Technol. 2022;12(1):132-6. doi: 10.25258/ijddt.12.1.24.
Kumar M, Jha A, Dr M, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv. 2020;17(10):1459-72. doi: 10.1080/17425247.2020.1798401, PMID 32684002.
Jacob S, Nair AB. Cyclodextrin complexes: perspective from drug delivery and formulation. Drug Dev Res. 2018;79(5):201-17. doi: 10.1002/ddr.21452, PMID 30188584.
Mohan WS, B BK, K RN. A review on biological activity of 1, 3-diazole derivatives. Int J Curr Pharm Sci 2022;14(5):1-3. doi: 10.22159/ijcpr.2022v14i5.2030.
Sharifzadeh A, Shokri H, Katiraee F. Anti-adherence and anti-fungal abilities of thymol and carvacrol against candida species isolated from patients with oral candidiasis in comparison with fluconazole and voriconazole. Jundishapur J Nat Pharm Prod. 2021;16(1):1-7. doi: 10.5812/jjnpp.65005.
Walther G, Zimmermann A, Theuersbacher J, Kaerger K, Von lilienfeld-toal M, Roth M. Eye infections caused by filamentous fungi: spectrum and antifungal susceptibility of the prevailing agents in germany. J Fungi (Basel). 2021;7(7):1-14. doi: 10.3390/jof7070511, PMID 34206899.
Alhagiesa AW, Ghareeb MM. The formulation and characterization of nimodipine nanoparticles for the enhancement of solubility and dissolution rate. Iraqi J Pharm Sci. 2021;30(2):143-52.
El-Emam GA, Girgis GNS, El-Sokkary MMA, El-Azeem Soliman OA, Abd El Gawad AEGH. Ocular inserts of voriconazole-loaded proniosomal gels: formulation, evaluation and microbiological studies. Int J Nanomedicine. 2020;15:7825-40. doi: 10.2147/IJN.S268208, PMID 33116503.
Satyajit C, Rao MB, Patro CN, Swain S, Taria S, Kumar S. Formulation, characterization and in vitro evaluation for solubility enhancement of a poorly water-soluble drug using nanoedge technique. World J Pharm Res. 2014;3:2152-67.
Hao YM, Li K. Entrapment and release difference resulting from hydrogen bonding interactions in niosome. Int J Pharm. 2011;403(1-2):245-53. doi: 10.1016/j.ijpharm.2010.10.027, PMID 20971171.
Huang T, Wang Y, Shen Y, Ao H, Guo Y, Han M. Preparation of high drug-loading celastrol nanosuspensions and their anti-breast cancer activities in vitro and in vivo. Sci Rep. 2020;10(1):8851. doi: 10.1038/s41598-020-65773-9, PMID 32483248.
Abdalla KF, Kamoun EA, El Maghraby GM. Optimization of the entrapment efficiency and release of ambroxol hydrochloride alginate beads. J App Pharm Sci. 2015;5(4):13-9. doi: 10.7324/JAPS.2015.50403.
Madan JR, Adokar BR, Dua K. Development and evaluation of in situ gel of pregabalin. Int J Pharm Investig. 2015;5(4):226-33. doi: 10.4103/2230-973X.167686, PMID 26682193.
Powar TA, Hajare AA. Lyophilized ethinylestradiol nanosuspension: fabrication, characterization and evaluation of in vitro anticancer and pharmacokinetic study. Indian J Pharm Sci. 2020;82(1):54-9. doi: 10.36468/pharmaceutical-sciences.622.
Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release. 2016;225:75-86. doi: 10.1016/j.jconrel.2016.01.034, PMID 26805517.
Patil M, Waydande S, Pawar P. Design and evaluation of topical solid dispersion composite of voriconazole for the treatment of ocular keratitis. Ther Deliv. 2019;10(8):481-92. doi: 10.4155/tde-2019-0021, PMID 31462154.
Dolenc A, Govedarica B, Dreu R, Kocbek P, Srcic S, Kristl J. Nanosized particles of orlistat with enhanced in vitro dissolution rate and lipase inhibition. Int J Pharm. 2010;396(1-2):149-55. doi: 10.1016/j.ijpharm.2010.06.003, PMID 20540997.
Jassim ZE, Hussein AA. Formulation and evaluation of clopidogrel tablet incorporating drug nanoparticles. Int J Pharm Sci. 2014;6(1):838-51.
Rizal S, Abdullah CK, Olaiya NG, Sri Aprilia NA, Zein I, Surya I. Preparation of palm oil ash nanoparticles: Taguchi optimization method by particle size distribution and morphological studies. Appl Sci. 2020;10(3):1-15. doi: 10.3390/app10030985.
Ahmed TA, Aljaeid BM. A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. Int J Nanomedicine. 2017;12:1863-75. doi: 10.2147/IJN.S131850, PMID 28331311.
Liu P, Viitala T, Kartal Hodzic A, Liang H, Laaksonen T, Hirvonen J. Interaction studies between indomethacin nanocrystals and peo/ppo copolymer stabilizers. Pharm Res. 2015;32(2):628-39. doi: 10.1007/s11095-014-1491-3, PMID 25145336.
Prasetyo J, Sulaiman TNS, Lukitaningsih E. Synthesis, characterization, and optimization of biodegradable pcl-peg-pcl triblock copolimeric micelles as nanocarriers for hydrophobic drug solubility enhancer. Int J Curr Pharm Sci. 2020;12(2):6-10. doi: 10.22159/ijcpr.2020v12i2.37478.
Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Augustijns P. A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci. 2009;98(6):2091-103. doi: 10.1002/jps.21563, PMID 18803265.
Abbas HK, Wais FMH, Abood AN. Preparation and evaluation of ketoprofen nanosuspension using solvent evaporation technique. Iraqi J Pharm Sci. 2017;26(2):41-55. doi: 10.31351/vol26iss2pp41-55.
Gadad AP, P SC, PMD, Mastiholimath VS. Moxifloxacin loaded polymeric nanoparticles for sustained ocular drug delivery. PCI- Approved-IJPSN 2018;5(2):1727-34. doi: 10.37285/ijpsn.2012.5.2.8.
Sharma M, Kohli S, Dinda A. In vitro and in vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer. Saudi Pharm J. 2015;23(6):675-82. doi: 10.1016/j.jsps.2015.02.013, PMID 26702263.
Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010;67(3):283-90. PMID 20524431.
Mandlik SK, Ranpise NS. Implementation of experimental design methodology in preparation and characterization of zolmitriptan-loaded chitosan nanoparticles. Int Curr Pharm J. 2017;6(3):16-22. doi: 10.3329/icpj.v6i3.32684.
Rane Y, Mashru R, Sankalia M, Sankalia J. Effect of hydrophilic swellable polymers on dissolution enhancement of carbamazepine solid dispersions studied using response surface methodology. AAPS PharmSciTech. 2007;8(2):27. doi: 10.1208/pt0802027, PMID 17622105.
Vanstraelen K, Maertens J, Augustijns P, Lagrou K, de Loor H, Mols R. Investigation of saliva as an alternative to plasma monitoring of voriconazole. Clin Pharmacokinet. 2015;54(11):1151-60. doi: 10.1007/s40262-015-0269-z, PMID 25910879.
Lakshmi P, Kumar GA. Nanosuspension technology: a review. Int J Pharm Sci. 2010;2(4):35-40.
Muller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. International Journal of Pharmaceutics. 1998;160(2):229-37. doi: 10.1016/S0378-5173(97)00311-6.
Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS. Mid-infrared spectroscopy as a polymer selection tool for formulating amorphous solid dispersions. J Pharm Pharmacol. 2014;66(2):244-55. doi: 10.1111/jphp.12079, PMID 24433425.
Oh MJ, Shim JB, Yoo H, Lee GY, Jo H, Jeong SM. The dissolution property of raloxifene hcl solid dispersion using hydroxypropyl methylcellulose. Macromol Res. 2012;20(8):835-41. doi: 10.1007/s13233-012-0127-x.
Sharma A, Jain CP, Tanwar YS. Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. J Chil Chem Soc. 2013;58(1):1553-7. doi: 10.4067/S0717-97072013000100012.
Sethia S, Squillante E. Solid dispersion of carbamazepine in pvp k30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272(1-2):1-10. doi: 10.1016/j.ijpharm.2003.11.025, PMID 15019063.
Zaini E, Fitriani L, Effendy S, Noviza D, Halim A. Preparation and characterization of solid dispersion telmisartan-hydroxypropyl methyl cellulose (HPMC) E5 LV by co-grinding method. Orient J Chem. 2017;33(2):873-8. doi: 10.13005/ojc/330236.
Published
How to Cite
Issue
Section
Copyright (c) 2024 SARMAD AL-EDRESI, MAZIN THAMIR ABDUL-HASAN, YASMIEN ABDUL HADI SALAL
This work is licensed under a Creative Commons Attribution 4.0 International License.