CURCUMA AERUGINOSA ROXB. EXTRACT INHIBITS THE PRODUCTION OF PROINFLAMMATORY CYTOKINES ON RAW 264.7 MACROPHAGES

Authors

  • IRENE PUSPA DEWI Faculty of Pharmacy, Universitas Andalas, Indonesia -25163, Akademi Farmasi Prayoga, Indonesia, 25111 https://orcid.org/0000-0002-1857-9001
  • DACHRIYANUS Faculty of Pharmacy, Universitas Andalas, Indonesia -25163 https://orcid.org/0000-0002-1857-9001
  • YUFRI ALDI Faculty of Pharmacy, Universitas Andalas, Indonesia -25163
  • NOR HADIANI ISMAIL Atta-ur-Rahman Institute for Natural Product Discovery, UiTM Puncak Alam Campus, Malaysia https://orcid.org/0000-0002-1857-9001
  • DIRA HEFNI Faculty of Pharmacy, Universitas Andalas, Indonesia -25163
  • MERI SUSANTI Faculty of Pharmacy, Universitas Andalas, Indonesia -25163
  • SURYATI SYAFRI Faculty of Pharmacy, Universitas Andalas, Indonesia -25163 https://orcid.org/0000-0002-1857-9001
  • FATMA SRI WAHYUNI Faculty of Pharmacy, Universitas Andalas, Indonesia -25163 https://orcid.org/0000-0002-2026-4156

DOI:

https://doi.org/10.22159/ijap.2024.v16s1.08

Keywords:

Anti-inflammatory, Curcuma aeruginosa Roxb., Immune response, LPS, Raw 264.7 macrophages

Abstract

Objective: The study explores the potential of Curcuma aeruginosa Roxb. extract for anti-inflammatory properties.

Methods: Curcuma aeruginosa Roxb. simplicia was macerated with distilled ethanol. In vitro testing was done on Raw 264.7 macrophages to fulfill this aim by observing Tumor Necrosis Factor (TNF)-α, Interleukin (IL)-6 production and phagocytosis activity. The production of IL-6 and TNF-α were determined using the ELISA method while phagocytosis activity using the neutral red uptake method.

Results: The results showed that Curcuma aeruginosa Roxb. extract inhibited production of TNF-α and IL-6 and phagocytic activity and on Raw 264.7 macrophages.

Conclusion: The results demonstrated that Curcuma aeruginosa Roxb. extract could be developed as an anti-inflammatory, which can be improved as a novel pharmaceutical approach for treating inflammation-related illness.

Downloads

Download data is not yet available.

References

Zhao Q, Zhu L, Wang S, Gao Y, Jin F. Molecular mechanism of the anti-inflammatory effects of plant essential oils: a systematic review. J Ethnopharmacol. 2023;301:115829. doi: 10.1016/j.jep.2022.115829, PMID 36252876.

Furst R, Zundorf I. Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm. 2014;2014:146832. doi: 10.1155/2014/146832, PMID 24987194.

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204-18. doi: 10.18632/oncotarget.23208, PMID 29467962.

Suzuki K. Chronic inflammation as an immunological abnormality and effectiveness of exercise. Biomolecules. 2019;9(6):3-7. doi: 10.3390/biom9060223, PMID 31181700.

Hu TY, Ju JM, Mo LH, Ma L, Hu WH, You RR. Anti-inflammation action of xanthones from swertia chirayita by regulating COX-2/NF-κB/MAPKs/Akt signaling pathways in RAW 264.7 macrophage cells. Phytomedicine. 2019;55:214-21. doi: 10.1016/j.phymed.2018.08.001, PMID 30668431.

Nguyen TQC, Duy Binh T, Pham TLA, Nguyen YDH, Thi Xuan Trang D, Nguyen TT. Anti-inflammatory effects of lasia spinosa leaf extract in lipopolysaccharide-induced raw 264.7 macrophages. Int J Mol Sci. 2020;21(10). doi: 10.3390/ijms21103439, PMID 32414062.

Harikrishnan H, Jantan I, Haque MA, Kumolosasi E. Anti-inflammatory effects of phyllanthus amarus schum. and thonn. Through inhibition of NF-ΚB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC Complement Altern Med. 2018;18(1):224. doi: 10.1186/s12906-018-2289-3, PMID 30045725.

Tsai WH, Yang CC, Li PC, Chen WC, Chien CT. Therapeutic potential of traditional Chinese medicine on inflammatory diseases. J Tradit Complement Med. 2013;3(3):142-51. doi: 10.4103/2225-4110.114898, PMID 24716170.

Wahyuni FS, Israf Ali DA, Lajis NH, DD. Anti-inflammatory activity of isolated compounds from the stem bark of Garcinia cowa Roxb. Pharmacogn J. 2016;9(1):55-7. doi: 10.5530/pj.2017.1.10.

Seo J, Lee U, Seo S, Wibowo AE, Pongtuluran OB, Lee KJ. Anti-inflammatory and antioxidant activities of methanol extract of piper betle linn. (Piper betle L.) leaves and stems by inhibiting NF-κB/MAPK/Nrf2 signaling pathways in RAW 264.7 macrophages. Biomed Pharmacother. 2022 Jun;155:113734. doi: 10.1016/j.biopha.2022.113734.

Haque MA, Jantan I, Harikrishnan H. Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways. Int Immunopharmacol. 2018 Jan;55:312-22. doi: 10.1016/j.intimp.2018.01.001, PMID 29310107.

Gregory JL, Morand EF, McKeown SJ, Ralph JA, Hall P, Yang YH. Macrophage migration inhibitory factor induces macrophage recruitment via CC chemokine ligand 2. J Immunol. 2006;177(11):8072-9. doi: 10.4049/jimmunol.177.11.8072, PMID 17114481.

Szliszka E, Kucharska AZ, Sokol Letowska A, Mertas A, Czuba ZP, Krol W. Chemical composition and anti-inflammatory effect of ethanolic extract of Brazilian green propolis on activated. Evid Based Complement Alternat Med. 2013;J774:1-13.

Li Q, Dong DD, Huang QP, Li J, Du YY, Li B. The anti-inflammatory effect of sonchus oleraceus aqueous extract on lipopolysaccharide stimulated RAW 264.7 cells and mice. Pharm Biol. 2017;55(1):799-809. doi: 10.1080/13880209.2017.1280514, PMID 28112016.

Sulfianti A, Ningsih S, Agustini K. Chemoprevention effect of curcuma aeruginosa in DMBA-induced cytokines production. Int Res J Pharm. 2019;10(3):54-9. doi: 10.7897/2230-8407.100378.

Yuandani, Jantan I, Rohani AS, Sumantri IB. Immunomodulatory effects and mechanisms of curcuma species and their bioactive compounds: a review. Front Pharmacol. 2021;12:643119. doi: 10.3389/fphar.2021.643119, PMID 33995049.

Cheng XD, Wu QX, Zhao J, Su T, Lu YM, Zhang WN. Immunomodulatory effect of a polysaccharide fraction on RAW 264.7 macrophages extracted from the wild lactarius deliciosus. Int J Biol Macromol. 2019;128:732-9. doi: 10.1016/j.ijbiomac.2019.01.201, PMID 30710593.

Wen L, Huang L, Li Y, Feng Y, Zhang Z, Xu Z. New peptides with immunomodulatory activity identified from rice proteins through peptidomic and in silico analysis. Food Chem. 2021 Jun;364:130357. doi: 10.1016/j.foodchem.2021.130357, PMID 34174647.

Li H, Xie W, Sun H, Cao K, Yang X. Effect of the structural characterization of the fungal polysaccharides on their immunomodulatory activity. Int J Biol Macromol. 2020;164:3603-10. doi: 10.1016/j.ijbiomac.2020.08.189, PMID 32860795.

Wang Y, Tian Y, Shao J, Shu X, Jia J, Ren X. Macrophage immunomodulatory activity of the polysaccharide isolated from collybia radicata mushroom. Int J Biol Macromol. 2018;108:300-6. doi: 10.1016/j.ijbiomac.2017.12.025, PMID 29222012.

Wadsworth TL, Koop DR. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem Pharmacol. 1999;57(8):941-9. doi: 10.1016/s0006-2952(99)00002-7, PMID 10086329.

Wang Z, Jiang W, Zhang Z, Qian M, Du B. Nitidine chloride inhibits LPS-induced inflammatory cytokines production via MAPK and NF-kappaB pathway in RAW 264.7 cells. J Ethnopharmacol. 2012;144(1):145-50. doi: 10.1016/j.jep.2012.08.041, PMID 22971898.

Sozzani S, Abbracchio MP, Annese V, Danese S, De Pita O, De Sarro G. Chronic inflammatory diseases: do immunological patterns drive the choice of biotechnology drugs? A critical review. Autoimmunity. 2014;47(5):287-306. doi: 10.3109/08916934.2014.897333, PMID 24697663.

Dewi IP, Wahyuni F, Aldi Y, Dachriyanus. Garcinia cowa roxb. ethanol extract inhibits inflammation in lps-induced raw 264.7 macrophages. Int J App Pharm 2023;15(1):1-4. doi: 10.22159/ijap.2023.v15s1.01.

Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano Yamamoto T. Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol. 2013;2013:181849. doi: 10.1155/2013/181849, PMID 23762085.

Arshad L, Haque MA, Abbas Bukhari SN, Jantan I. An overview of structure-activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents. Future Med Chem. 2017;9(6):605-26. doi: 10.4155/fmc-2016-0223, PMID 28394628.

Lee DY, Li H, Lim HJ, Lee HJ, Jeon R, Ryu JH. Anti-inflammatory activity of sulfur-containing compounds from garlic. J Med Food. 2012;15(11):992-9. doi: 10.1089/jmf.2012.2275, PMID 23057778.

Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:1-12.

Han EH, Choi JH, Hwang YP, Park HJ, Choi CY, Chung YC. Immunostimulatory activity of aqueous extract isolated from prunella vulgaris. Food Chem Toxicol. 2009;47(1):62-9. doi: 10.1016/j.fct.2008.10.010, PMID 18983886.

Andrina S, Churiyah C, Nuralih N. Anti-inflammatory effect of ethanolic extract of curcuma aeruginosa roxb rhizome, morinda citrifolia fruit and apium graveolens leaf on lipopplysaccharide-induce RAW 264.7 cell lines. IJCC. 2015;6(3):84-8. doi: 10.14499/indonesianjcanchemoprev6iss3pp84-88.

Published

15-02-2024

How to Cite

DEWI, I. P., DACHRIYANUS, ALDI, Y., ISMAIL, N. H., HEFNI, D., SUSANTI, M., SYAFRI, S., & WAHYUNI, F. S. (2024). CURCUMA AERUGINOSA ROXB. EXTRACT INHIBITS THE PRODUCTION OF PROINFLAMMATORY CYTOKINES ON RAW 264.7 MACROPHAGES. International Journal of Applied Pharmaceutics, 16(1), 41–44. https://doi.org/10.22159/ijap.2024.v16s1.08

Issue

Section

Original Article(s)