ANTI-OBESITY NUTRACEUTICALS: INSIGHTS INTO MECHANISMS OF ACTION AND POTENTIAL USE OF BIOCOMPATIBLE NANOCARRIERS FOR DELIVERY
DOI:
https://doi.org/10.22159/ijap.2024v16i4.50773Keywords:
Obesity, Nutraceutical, WKBE, PEE, CrPic3, Biocompatible carriers, Drug delivery systemAbstract
One of the serious health issues that has detrimental effects on health is obesity. Obesity is associated with common comorbidities like diabetes, dyslipidemia, and cardiovascular diseases. New understanding of the pathophysiologic mechanisms underlying obesity has led to the development of several novel agents and effective strategies to combat the global obesity epidemic and its comorbidities. The objective of managing obesity has changed to include both reducing its complications and helping people lose weight. Although there are more pharmaceutical options available for managing obesity, their efficacy and safety profiles are either limited or moderate. While behavior interventions and active lifestyle remain the cornerstones of successful weight loss, it can be very challenging to maintain such a healthy lifestyle. Thus, new agents that are safer and more effective are therefore urgently needed. Natural products and dietary supplements have been demonstrated as a potential treatment for obesity. Recent studies suggested that propolis, chromium picolinate, and White Kidney Bean Extract (WKBE) may have anti-obesity properties. This review provides an overview on the anti-obesity effects of these natural products, their active ingredients and mechanisms of action. In addition to potential cutting-edge delivery techniques that can be applied to maximize the anti-obesity effects of these bioactive substances with varying solubility, bioavailability, and stability.
Downloads
References
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6-10. doi: 10.1016/j.metabol.2018.09.005, PMID 30253139.
Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288-98. doi: 10.1038/s41574-019-0176-8, PMID 30814686.
Neil ES, McGinley JN, Fitzgerald VK, lauck CA, Tabke JA, Streeter McDonald MR. White kidney bean (Phaseolus vulgaris l.) consumption reduces fat accumulation in a polygenic mouse model of obesity. Nutrients. 2019;11(11):2780. doi: 10.3390/nu11112780, PMID 31731665.
Thompson HJ, McGinley JN, Neil ES, Brick MA. Beneficial effects of common bean on adiposity and lipid metabolism. Nutrients. 2017;9(9):998. doi: 10.3390/nu9090998, PMID 28891931.
Shi Z, Zhu Y, Teng C, Yao Y, Ren G, Richel A. Anti-obesity effects of α-amylase inhibitor enriched-extract from white common beans (Phaseolus vulgaris l.) associated with the modulation of gut microbiota composition in high-fat diet-induced obese rats. Food Funct. 2020;11(2):1624-34. doi: 10.1039/c9fo01813a, PMID 32022058.
Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, Propolis, and Royal Jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev. 2017;2017:1259510. doi: 10.1155/2017/1259510, PMID 28814983.
Anjum SI, Ullah A, Khan KA, Attaullah M, Khan H, Ali H. Composition and functional properties of propolis (bee glue): a review. Saudi J Biol Sci. 2019;26(7):1695-703. doi: 10.1016/j.sjbs.2018.08.013, PMID 31762646.
Albarracin CA, Fuqua BC, Evans JL, Goldfine ID. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab Res Rev. 2008;24(1):41-51. doi: 10.1002/dmrr.755, PMID 17506119.
Docherty JP, Sack DA, Roffman M, Finch M, Komorowski JR. A double-blind, placebo-controlled, exploratory trial of chromium picolinate in atypical depression: effect on carbohydrate craving. J Psychiatr Pract. 2005;11(5):302-14. doi: 10.1097/00131746-200509000-00004, PMID 16184071.
Abdelfattah DS, Fouad MA, Elmeshad AN, El-Nabarawi MA, Elhabal SF. Anti-obesity effect of combining white kidney bean extract, propolis ethanolic extract and CrPi3 on sprague-dawley rats fed a high-fat diet. Nutrients. 2024;16(2):310. doi: 10.3390/nu16020310, PMID 38276548.
Ebrahimi B, Baroutian S, Li J, Zhang B, Ying T, Lu J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front Nutr. 2022;9:1047026. doi: 10.3389/fnut.2022.1047026, PMID 36712534.
Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin Nutr. 2015;34(6):1101-8. doi: 10.1016/j.clnu.2014.12.019, PMID 25618800.
Manocha S, Dhiman S, Grewal AS, Guarve K. Nanotechnology: an approach to overcome bioavailability challenges of nutraceuticals. J Drug Deliv Sci Technol. 2022;72:103418. doi: 10.1016/j.jddst.2022.103418.
World Health Organization. Obesity and Overweight. Available from: https://www.who.int/en/news-room/factsheets/detail/obesity-and-overweight [Last accessed on 14 May 2024]
Aboulghate M, Elaghoury A, Elebrashy I, Elkafrawy N, Elshishiney G, Abul Magd E. The burden of obesity in Egypt. Front Public Health. 2021;9:718978. doi: 10.3389/fpubh.2021.718978, PMID 34513789.
Saini J, lora SS, Gupta MC. Maternal obesity as a predictive marker for adverse pregnancy outcome: a case-control study. Asian J Pharm Clin Res. 2023;16:33-7.
Taroeno Hariadi KW, Hardianti MS, Sinorita H, Aryandono T. Obesity, leptin, and deregulation of microRNA in lipid metabolisms: their contribution to breast cancer prognosis. Diabetol Metab Syndr. 2021;13(1):10. doi: 10.1186/s13098-020-00621-4, PMID 33482868.
Mohammad S, Aziz R, Al Mahri S, Malik SS, Haji E, Khan AH. Obesity and COVID-19: what makes obese host so vulnerable? Immun Ageing. 2021;18(1):1. doi: 10.1186/s12979-020-00212-x, PMID 33390183.
Hu S, Wang L, Yang D, Li L, Togo J, Wu Y. Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell Metab. 2018;28(3):415-31.e4. doi: 10.1016/j.cmet.2018.06.010, PMID 30017356.
Gariani K, Ryu D, Menzies KJ, Yi HS, Stein S, Zhang H. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J Hepatol. 2017;66(1):132-41. doi: 10.1016/j.jhep.2016.08.024, PMID 27663419.
Kotsis V, Antza C, Doundoulakis G, Stabouli S. Obesity, hypertension, and dyslipidemia. Springer; 2019.
Kulmi M, Saxena G. Comparison of effects of sitagliptin and a combination of naltrexone and bupropion in high fat-diet induced obesity model in rats. Asian J Pharm Clin Res. 2022;15:119-23. doi: 10.22159/ajpcr.2022.v15i8.45002.
Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U. Pharmacological management of obesity: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342-62. doi: 10.1210/jc.2014-3415, PMID 25590212.
Jakab J, Miskic B, Miksic S, Juranic B, Cosic V, Schwarz D. Adipogenesis as a potential anti-obesity target: a review of pharmacological treatment and natural products. Diabetes Metab Syndr Obes. 2021;14:67-83. doi: 10.2147/DMSO.S281186, PMID 33447066.
Dietary supplements market-driven by increasing demand for health products: global industry analysis and opportunity assessment 2015-2025; Available from: https://www.futuremarketinsights.com/reports/dietary-supplements-market [Last accessed on 10 Aug 2023]
Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract. 2016;25Suppl 2:41-59. doi: 10.1159/000443404, PMID 26679767.
Peddio S, Padiglia A, Cannea FB, Crnjar R, Zam W, Sharifi Rad J. Common bean (Phaseolus vulgaris L.) α-amylase inhibitors as safe nutraceutical strategy against diabetes and obesity: an update review. Phytother Res. 2022;36(7):2803-23. doi: 10.1002/ptr.7480, PMID 35485365.
Los FG, Zielinski AA, Wojeicchowski JP, Nogueira A, Demiate IM. Beans (Phaseolus vulgaris l.): whole seeds with complex chemical composition. Curr Opin Food Sci. 2018;19:63-71. doi: 10.1016/j.cofs.2018.01.010.
Pop AV, Ciulca S. Phenotypic variability of pod traits in dry bean genotypes from Romania. J Hortic For Biotechnol. 2013;17:380-5.
Rebello CJ, Greenway FL, Finley JW. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev. 2014;15(5):392-407. doi: 10.1111/obr.12144, PMID 24433379.
Du W, Jia X, Jiang H, Wang Y, li l, Zhang B. Consumption of dried legume and legume products among adults aged 18-59 y old in 15 provinces in China in 2015. Acta Nutrimenta Sin. 2018;40:17-22.
Yao Y, Hu Y, Zhu Y, Gao Y, Ren G. Comparisons of phaseolin type and α-amylase inhibitor in common bean (Phaseolus vulgaris l.) in China. The Crop Journal. 2016;4(1):68-72. doi: 10.1016/j.cj.2015.09.002.
Nciri N, Cho N. New research highlights: impact of chronic ingestion of white kidney beans (Phaseolus vulgaris L. var. Beldia) on small-intestinal disaccharidase activity in Wistar rats. Toxicol Rep. 2018;5:46-55. doi: 10.1016/j.toxrep.2017.12.016, PMID 29270365.
Thompson HJ, McGinley JN, Neil ES, Brick MA. Beneficial effects of common bean on adiposity and lipid metabolism. Nutrients. 2017;9(9):998. doi: 10.3390/nu9090998, PMID 28891931.
Lüthi C, Alvarez Alfageme F, Li Y, Naranjo SE, Higgins TJ, Romeis J. Potential of the bean α-amylase inhibitor α AI -1 to inhibit α-amylase activity in true bugs (Hemiptera). J Applied Entomology. 2015;139(3):192-200. doi: 10.1111/jen.12146.
Yang CH, Chiang MT. Effects of white kidney bean extracts on carbohydrate and lipid metabolism in rats fed a high-fat diet. Taiwan J Agric Chem Food Sci. 2014;52:154-62.
Thom E. A randomized, double-blind, placebo-controlled trial of a new weight-reducing agent of natural origin. J Int Med Res. 2000;28(5):229-33. doi: 10.1177/147323000002800505, PMID 11092233.
Boivin M, Zinsmeister AR, Go VL, DiMagno EP. Effect of a purified amylase inhibitor on carbohydrate metabolism after a mixed meal in healthy humans. Mayo Clin Proc. 1987;62(4):249-55. doi: 10.1016/s0025-6196(12)61900-4, PMID 2436011.
Boivin M, Flourie B, Rizza RA, Go VL, DiMagno EP. Gastrointestinal and metabolic effects of amylase inhibition in diabetics. Gastroenterology. 1988;94(2):387-94. doi: 10.1016/0016-5085(88)90426-x, PMID 2446948.
Harikumar KB, Jesil AM, Sabu MC, Kuttan R. A preliminary assessment of the acute and subchronic toxicity profile of phase2: an alpha-amylase inhibitor. Int J Toxicol. 2005;24(2):95-102. doi: 10.1080/10915810590936364, PMID 16036768.
Abdelrazeg S, Hussin H, Salih M. Propolis composition and applications in medicine and health. Int Med J. 2020;25:1505-42.
Sforcin JM. Biological properties and therapeutic applications of propolis. Phytother Res. 2016;30(6):894-905. doi: 10.1002/ptr.5605, PMID 26988443.
Hori JI, Zamboni DS, Carrao DB, Goldman GH, Berretta AA. The inhibition of inflammasome by Brazilian propolis (EPP-AF). Evid Based Complement Alternat Med. 2013;2013:418508. doi: 10.1155/2013/418508, PMID 23690844.
Resa PN, Nathaacute lia UF, Edna AB, Bruno AR, Mirela MO, Resa AB. Methodologies for the evaluation of the antibacterial activity of propolis. Afr J Microbiol Res. 2013;7(20):2344-50. doi: 10.5897/AJMR12.2362.
Rocha BA, Bueno PC, Vaz MM, Nascimento AP, Ferreira NU, Moreno P. Evaluation of a propolis water extract using a reliable RP-HPLC methodology and in vitro and in vivo efficacy and safety characterisation. Evid Based Complement Alternat Med. 2013;2013:670451. doi: 10.1155/2013/670451, PMID 23710228.
Tsuda T, Kumazawa S. Propolis: chemical constituents, plant origin, and possible role in the prevention and treatment of obesity and diabetes. J Agric Food Chem. 2021;69(51):15484-94. doi: 10.1021/acs.jafc.1c06194, PMID 34910481.
Bankova V, Popova M, Trusheva B. The phytochemistry of the honeybee. Phytochemistry. 2018;155:1-11. doi: 10.1016/j.phytochem.2018.07.007, PMID 30053651.
Abdl El Hady FK, Hegazi AG. Gas chromatography-mass spectrometry (GC/MS) study of the Egyptian propolis 1-aliphatic, phenolic acids and their esters. J Appl Sci. 1994;9:749-60.
Balica G, Vostinaru O, Stefanescu C, Mogosan C, Iaru I, Cristina A. Potential role of propolis in the prevention and treatment of metabolic diseases. Plants (Basel). 2021;10(5):883. doi: 10.3390/plants10050883, PMID 33925692.
Natsir R, Usman AN, Ardyansyah BD, Fendi F. Propolis and honey trigona decrease leptin levels of central obesity patients. Enfermeria Clinica. 2020;30:96-9. doi: 10.1016/j.enfcli.2019.07.043.
Chen LH, Chien YW, Chang ML, Hou CC, Chan CH, Tang HW. Taiwanese green propolis ethanol extract delays the progression of type 2 diabetes mellitus in rats treated with streptozotocin/high-fat diet. Nutrients. 2018;10(4):503. doi: 10.3390/nu10040503, PMID 29670038.
Han X, Guo J, You Y, Zhan J, Huang W. P-Coumaric acid prevents obesity via activating thermogenesis in brown adipose tissue mediated by mTORC1-RPS6. FASEB J. 2020;34(6):7810-24. doi: 10.1096/fj.202000333R, PMID 32350925.
Boisard S, le Ray AM, Gatto J, Aumond MC, Blanchard P, Derbre S. Chemical composition, antioxidant and anti-AGEs activities of a french poplar type propolis. J Agric Food Chem. 2014;62(6):1344-51. doi: 10.1021/jf4053397, PMID 24443994.
Nie J, Chang Y, Li Y, Zhou Y, Qin J, Sun Z. Caffeic acid phenethyl Ester (Propolis extract) ameliorates insulin resistance by inhibiting JNK and NF-κB inflammatory pathways in diabetic mice and HepG2 cell models. J Agric Food Chem. 2017;65(41):9041-53. doi: 10.1021/acs.jafc.7b02880, PMID 28799756.
Shin SH, Seo SG, Min S, Yang H, lee E, Son JE, Kwon JY, Yue S, Chung MY, Kim KH, Cheng JX, lee HJ, lee KW. Caffeic acid phenethyl ester, major component of propolis, suppresses high-fat diet-induced obesity through inhibiting adipogenesis at the mitotic clonal expansion stage. J Agric Food Chem. 2014;62:4306-12.
Xu J, Ge J, He X, Sheng Y, Zheng S, Zhang C. Caffeic acid reduces body weight by regulating gut microbiota in diet-induced-obese mice. J Funct Foods. 2020;74:104061. doi: 10.1016/j.jff.2020.104061.
Liao CC, Ou TT, Wu CH, Wang CJ. Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J Agric Food Chem. 2013;61(46):11082-8. doi: 10.1021/jf4026647, PMID 24156384.
Cardinault N, Tourniaire F, Astier J, Couturier C, Bonnet L, Seipelt E. Botanic origin of propolis extract powder drives contrasted impact on diabesity in high-fat-fed mice. Antioxidants (Basel). 2021;10(3):411. doi: 10.3390/antiox10030411, PMID 33803136.
Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germ-free mice. ISME J. 2013;7(4):880-4. doi: 10.1038/ismej.2012.153, PMID 23235292.
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-6. doi: 10.1038/nature12506, PMID 23985870.
Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376-81. doi: 10.1038/nature18646, PMID 27409811.
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242-9. doi: 10.1038/nature11552, PMID 22972297.
Roquetto AR, Monteiro NE, Moura CS, Toreti VC, de Pace F, Santos AD. Green propolis modulates gut microbiota, reduces endotoxemia and expression of TLR4 pathway in mice fed a high-fat diet. Food Res Int. 2015;76(3):796-803. doi: 10.1016/j.foodres.2015.07.026, PMID 28455065.
Cai W, Xu J, Li G, liu T, Guo X, Wang H. Ethanol extract of propolis prevents high-fat diet-induced insulin resistance and obesity in association with modulation of gut microbiota in mice. Food Res Int. 2020;130:108939. doi: 10.1016/j.foodres.2019.108939, PMID 32156386.
Drake TC, Rudser KD, Seaquist ER, Saeed A. Chromium infusion in hospitalized patients with severe insulin resistance: a retrospective analysis. Endocr Pract. 2012;18(3):394-8. doi: 10.4158/EP11243.OR, PMID 22297054.
Kaats GR, Blum K, Fisher JA, Adelman JA. Effects of chromium picolinate supplementation on body composition: a randomized, double-masked, placebo-controlled study. Curr Ther Res. 1996;57(10):747-56. doi: 10.1016/S0011-393X(96)80080-4.
Joseph LJ, Farrell PA, Davey SL, Evans WJ, Campbell WW. Effect of resistance training with or without chromium picolinate supplementation on glucose metabolism in older men and women. Metabolism. 1999;48(5):546-53. doi: 10.1016/s0026-0495(99)90048-3, PMID 10337851.
Aghdassi E, Arendt BM, Salit IE, Mohammed SS, Jalali P, Bondar H. In patients with HIV-infection, chromium supplementation improves insulin resistance and other metabolic abnormalities: a randomized, double-blind, placebo-controlled trial. Curr HIV Res. 2010;8(2):113-20. doi: 10.2174/157016210790442687, PMID 20163347.
Robati P, Mozafari H, Najarzadeh A, Dehghan A, Khorami E. The effect of chromium picolinate supplementation on body weight, body mass index and waist circumference in overweight and obese people. Med J Mashhad. 2015;58:117-22.
Jo H, AW. The effect of a new dietary mineral product on body composition and weight in overweight and obese people. The results from a comparative randomized 30d study. J Obes Eat Disord. 2016;2(1):496-507. doi: 10.21767/2471-8203.100015.
Vincent JB. Is the pharmacological mode of action of chromium(III) as a second messenger? Biol Trace Elem Res. 2015;166(1):7-12. doi: 10.1007/s12011-015-0231-9, PMID 25595680.
Wang ZQ, Qin J, Martin J, Zhang XH, Sereda O, Anderson RA. Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation. Metabolism. 2007;56(12):1652-5. doi: 10.1016/j.metabol.2007.07.007, PMID 17998017.
Kalra EK. Nutraceutical definition and introduction. AAPS Pharm Sci. 2003;5(3):E25. doi: 10.1208/ps050325, PMID 14621960.
Nasri H, Baradaran A, Shirzad H, Rafieian Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prev Med. 2014;5(12):1487-99. PMID 25709784.
McClements DJ, Zou L, Zhang R, Salvia Trujillo L, Kumosani T, Xiao H. Enhancing nutraceutical performance using excipient foods: designing food structures and compositions to increase bioavailability. Comp Rev Food Sci Food Safe. 2015;14(6):824-47. doi: 10.1111/1541-4337.12170.
Asghar A, Randhawa MA, Masood MM, Abdullah M, Irshad MA. Nutraceutical formulation strategies to enhance the bioavailability and efficiency: an overview. Role of materials science in food bioengineering. Elsevier; 2018. p. 329-52.
McClements DJ, Ozturk B. Utilization of nanotechnology to improve the handling, storage and biocompatibility of bioactive lipids in food applications. Foods. 2021;10:1-17.
Jones D, Caballero S, Davidov Pardo G. Bioavailability of nanotechnology-based bioactives and nutraceuticals. Adv Food Nutr Res. 2019;88:235-73. doi: 10.1016/bs.afnr.2019.02.014, PMID 31151725.
Pateiro M, Gomez B, Munekata PE, Barba FJ, Putnik P, Kovacevic DB. Food products nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules. 2021;26(6):1547. doi: 10.3390/molecules26061547, PMID 33799855.
Rehman A, Ahmad T, Aadil RM, Spotti MJ, Bakry AM, Khan IM. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci Technol. 2019;90:35-46.
Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. 2018;58(2):297-317. doi: 10.1080/10408398.2016.1160363, PMID 27052385.
Higashisaka K, Nagano K, Yoshioka Y, Tsutsumi Y. Nano-safety research: examining the associations among the biological effects of nanoparticles and their physicochemical properties and kinetics. Biol Pharm Bull. 2017;40(3):243-8. doi: 10.1248/bpb.b16-00854, PMID 28250267.
Zhang H, Jiang X, Cao G, Zhang X, Croley TR, Wu X. Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018;36(2):84-97. doi: 10.1080/10590501.2018.1450194, PMID 29667503.
Zanella M, Ciappellano SG, Venturini M, Tedesco E, Manodori l, Benetti F. Nutraceuticals and nanotechnology. Diet Ing Suppl. 2015;26:26-31.
Xiao J, Cao Y, Huang Q. Edible nanoencapsulation vehicles for oral delivery of phytochemicals: a perspective paper. J Agric Food Chem. 2017;65(32):6727-35. doi: 10.1021/acs.jafc.7b02128, PMID 28737908.
Fathi M, Martin A, McClements DJ. Nanoencapsulation of food ingredients using carbohydrate-based delivery systems. Trends Food Sci Technol. 2014;39(1):18-39. doi: 10.1016/j.tifs.2014.06.007.
Samaranayaka AG, li-Chan EC. Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J Funct Foods. 2011;3(4):229-54. doi: 10.1016/j.jff.2011.05.006.
Zhang R, Han Y, Xie W, liu F, Chen S. Advances in protein-based nanocarriers of bioactive compounds: from microscopic molecular principles to macroscopical structural and functional attributes. J Agric Food Chem. 2022;70(21):6354-67. doi: 10.1021/acs.jafc.2c01936, PMID 35603429.
Fathi M, Donsi F, McClements DJ. Protein-based delivery systems for the nanoencapsulation of food ingredients. Compr Rev Food Sci Food Saf. 2018;17(4):920-36. doi: 10.1111/1541-4337.12360, PMID 33350116.
Wan ZL, Guo J, Yang XQ. Plant protein-based delivery systems for bioactive ingredients in foods. Food Funct. 2015;6(9):2876-89. doi: 10.1039/c5fo00050e, PMID 26156251.
Assadpour E, Jafari SM. An overview of specialized equipment for nanoencapsulation of food ingredients. In: Nanoencapsulation of food ingredients by specialized equipment. Cambridge MA: Academic Press; 2019. p. 1-30.
Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105-21. doi: 10.1016/j.jare.2013.07.006, PMID 25750745.
Ahmad U, Ali A, Khan MM, Siddiqui MA, Akhtar J, Ahmad FJ. Nanotechnology-based strategies for nutraceuticals: a review of current research development. Nano Sci Technol Int J. 2019;10(2):133-55. doi: 10.1615/NanoSciTechnolIntJ.2019030098.
Bhattacharya S, Paul B, Biswas GR. Development and evaluation of hydrogel of an anti-fungal drug. Int J Pharm Pharm Sci. 2023;15:29-33. doi: 10.22159/ijpps.2023v15i10.48728.
Singh D. Application of novel drug delivery system in enhancing the therapeutic potential of phytoconstituents. Asian J Pharm. 2015;9:4.
Ajazuddin S, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680-9. doi: 10.1016/j.fitote.2010.05.001, PMID 20471457.
Akhavan S, Assadpour E, Katouzian I, Jafari SM. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol. 2018;74:132-46. doi: 10.1016/j.tifs.2018.02.001.
Mozafari MR, Flanagan J, Matia Merino L, Awati A, Omri A, Suntres ZE. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J Sci Food Agric. 2006;86(13):2038-45. doi: 10.1002/jsfa.2576.
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975-99. doi: 10.2147/IJN.S68861, PMID 25678787.
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, labib GS. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022;14(4):883. doi: 10.3390/pharmaceutics14040883, PMID 35456717.
Published
How to Cite
Issue
Section
Copyright (c) 2024 DOAA SALAH ELDIN ABDELFATTAH, MERVAT A. FOUAD, ALIAA N. ELMESHAD, MOHAMED A. El-NABARAWI, SAMMAR FATHY ELHABAL
This work is licensed under a Creative Commons Attribution 4.0 International License.