CRUDE INULIN DERIVED FROM DAHLIA TUBER AS NANOMATERIAL AND ITS CHARACTERIZATION

Authors

  • DENI RAHMAT Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Pancasila-12640, Jakarta, Indonesia https://orcid.org/0000-0003-1507-3205
  • VINESSA GRACIA PUTRI Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Pancasila-12640, Jakarta, Indonesia https://orcid.org/0009-0003-9430-5824
  • YATI SUMIYATI Laboratory of Pharmacology, Faculty of Pharmacy, Universitas Pancasila-12640, Jakarta, Indonesia https://orcid.org/0000-0002-2047-2035
  • YESI DESMIATY Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Pancasila, South Jakarta, DKI Jakarta-12640, Indonesia https://orcid.org/0000-0003-1507-3205
  • SAFIRA NAFISA Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Pancasila-12640, Jakarta, Indonesia https://orcid.org/0000-0002-8203-8138

DOI:

https://doi.org/10.22159/ijap.2024.v16s3.10

Keywords:

dahlia tuber, inulin, a cationic thiomer, nanoparticles

Abstract

Objective: Dahlia tuber (Dahlia sp.) is one of the inulin sources that could be planted in Indonesia. Inulin is fructan-based polysaccharide. Therefore, the research aimed to investigate inulin from the extract of dahlia tuber as a drug excipient, especially for nanoparticles based on inulin-cysteamine thiomer.

Methods: Crude inulin was isolated from dahlia tuber using ethanol for maceration. The resulting inulin was characterized using FT-IR and oxidized using sodium periodate (NaIO4) to increase solubility. Afterward, the oxidized crude inulin was further modified by conjugation with cysteamine to produce a cationic thiomer using reductive amination. The thiomer was evaluated regarding the number of thiol groups and solubility. The nanoparticles were prepared using ionic gelation methods. The resulting nanoparticles were evaluated for particle size and zeta potential.

Results: Inulin can be isolated from dahlia tuber with its content of 18.60±4.45% and carbohydrate of 61.75±0.75%. Crude inulin can be conjugated with cysteamine to generate a cationic thiomer using NaCNBH3 as a reductant, which can increase its solubility with free thiol group content of 415.21±40.39 µmol/g. Nanoparticles were generated from crude inulin-cysteamine thiomer with sodium tripolyphosphate (NaTTP), leading to a particle size of 180 nm and zeta potential of-10.8 mV.

Conclusion: As a potential nanoparticulate drug delivery system, a cationic thiomer could be synthesized from inulin derived from dahlia tuber grown in Indonesia.

Downloads

Download data is not yet available.

References

Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and its application in drug delivery. Pharmaceuticals (Basel). 2021;14(9):14(9):855. doi: 10.3390/ph14090855, PMID 34577554.

Mensink MA, Frijlink HW, Van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr Polym. 2015;130:405-19. doi: 10.1016/j.carbpol.2015.05.026, PMID 26076642.

Fares MM, Salem MS. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles. Drug Dev Ind Pharm. 2015;41(11):1785-92. doi: 10.3109/03639045.2015.1004184, PMID 25632979.

Legorreta SS, Villanueva Carvajal A, Morales Rosales EJ, laguna Cerda A, Dominguez Lopez A. Evaluation of inulin extracted from mexican wild dahlias (Dahlia coccinea Cav.). Phyton. 2016;85(1):63-70. doi: 10.32604/phyton.2016.85.063.

Albertini B, Passerini N, Bertoni S. Nanomaterials for oral drug administration. In: Martins JP, Santos HA, editors. Nanotechnology for oral drug delivery: from concept to applications. United Kingdom: Elsevier; 2020. p. 27-67.

Rahmat D, Devina C. Synthesis and characterization of a cationic thiomer based on ethyl cellulose for realization of mucoadhesive tablets and nanoparticles. Int J Nanomedicine. 2022;17:2321-34. doi: 10.2147/IJN.S321467, PMID 35645561.

Sunarti S, Ginting CN, Ginting SF. Processing of red dahlia tubers in produce inulin extract and material proximate testing. Nusantara Sci Technol Proc. 2022:34-8. doi: 10.11594/nstp.2022.2105.

Rahmat D, Nurhidayati L, Marcella M, Sumarny RO, Laksmitawati DR. In vitro anti-platelet aggregation activity of hydroxypropyl cellulose cysteamine-based nanoparticles containing crude bromelain. Int J Appl Pharm. 2020;12(3):95-8.

Kosasih W, Pudjiraharti S, Ratnaningrum D, Priatni S. Preparation of inulin from dahlia tubers. Procedia Chem. 2015;16:190-4. doi: 10.1016/j.proche.2015.12.035.

Petkova NT, Denev P. Methods for determination of inulin. In: Food, technologies and health in international scientific-practical conference food, technologies and health proceedings. BK. 2015. p. 135-40.

Scroccarello A, Della Pelle F, Neri L, Pittia P, Compagnone D. Silver and gold nanoparticles based colorimetric assays for the determination of sugars and polyphenols in apples. Food Res Int. 2019;119:359-68. doi: 10.1016/j.foodres.2019.02.006, PMID 30884666.

Deng Y, Wang Y, Zhong G, Yu X. Simultaneous quantitative analysis of protein, carbohydrate and fat in nutritionally complete formulas of medical foods by near-infrared spectroscopy. Infrared Phys Technol. 2018;93:124-9. doi: 10.1016/j.infrared.2018.07.027.

Bokov DO B, Karabeshkin DI K, Samylina IA S, Potanina OG P, Krasnyuk II, Malinkin AD M. Pharmacopoeial analysis of inulin-containing medicinal plant raw materials and drugs. Pharmacogn J. 2020;12(2):415-21. doi: 10.5530/pj.2020.12.64.

Iskandar YM, Pudjiraharti S, Ratnaningrum D. Kandungan inulin dari umbi Dahlia sp yang ditanam pada jenis tanah vertisol, inceptisol dan andisol. Indonesian. J Appl Chem. 2014;16(1).

Outlaw VK, Zhou J, Bragg AE, Townsend CA. Unusual blue-shifted acid-responsive photoluminescence behavior in 6-amino-8-cyanobenzo[1,2-b]indolizines. RSC Adv. 2016;6(66):61249-53. doi: 10.1039/C6RA10605F, PMID 28580137.

Raghupathi K, Thayumanavan S. Nano-armoring of enzymes: rational design of polymer-wrapped enzymes. Methods Enzymol. 2017 Jan 1;590. doi: 10.1016/bs.mie.2017.01.007, PMID 28411646.

Luo Y, Matejic T, Ng CK, Nunnally B, Porter T, Raso S. Characterization and analysis of biopharmaceutical proteins. Sep Sci Technol. 2011;10:283-359. doi: 10.1016/B978-0-12-375680-0.00008-5.

Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.

Periasamy M, Thirumalaikumar M. Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis. J Organomet Chem. 2000 Sep 8;609(1-2):137-51. doi: 10.1016/S0022-328X(00)00210-2.

Published

12-08-2024

How to Cite

RAHMAT, D., PUTRI, V. G., SUMIYATI, Y., DESMIATY, Y., & NAFISA, S. (2024). CRUDE INULIN DERIVED FROM DAHLIA TUBER AS NANOMATERIAL AND ITS CHARACTERIZATION. International Journal of Applied Pharmaceutics, 16(3), 56–60. https://doi.org/10.22159/ijap.2024.v16s3.10

Issue

Section

Original Article(s)

Most read articles by the same author(s)

<< < 1 2 3 > >>