SAMBILOTO LEAF NANOEMULSION AS A PHOTOPROTECTIVE AGENT: OPTIMIZATION OF TWEEN 20 AND PEG-400 CONCENTRATION USING THE REGULAR TWO-LEVEL FACTORIAL DESIGN

Authors

  • ELSA FITRIA APRIANI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia
  • MIKSUSANTI MIKSUSANTI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia
  • VITRI AGUSTIARINI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia
  • OCHITA LEDY FRANSISKA Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia
  • DWI HARDESTYARIKI Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i6.52083

Keywords:

Andrographis paniculata, Nanoemulsion, Tween 20, Photoprotective, Polyethylene glycol 400

Abstract

Objective: This study aims to determine the optimum concentration of Tween 20 and Polyethylene Glycol 400 (PEG-400) in Sambiloto leaf extract nanoemulsion.

Methods: The formula of sambiloto leaf nanoemulsion was developed using the regular two-level factorial design based on responses of pH values, density, viscosity, and transmittance percentage. The optimum formula was tested for stability and photoprotective activity by determining the Sun Protection Factor (SPF) value and antioxidant activity.

Results: Sambiloto leaf extract contains andrographolide at 3.397%. The optimum formula for nanoemulsion preparations was obtained at 10% of tween 20 and 10% of PEG-400. The optimum nanoemulsion had a distinctive green extract aroma, a transmittance percentage of 86.7±0.170, a globule size of 130.43±54.056 nm, a polydispersity index of 0.318±0.043, and a zeta potential of-26.5±0.544 mV. The optimum formula's photoprotective activity resulted in an SPF value of 42.944±0.026 and an IC50 of 103.611±1.085 ppm. There was no significant change in pH or transmittance percentage based on the stability test (p<0.05).

Conclusion: The results show that the optimum formula of sambiloto leaf nanoemulsion could be a photoprotective agent that is also stable.

Downloads

Download data is not yet available.

References

Ljubic A, Thulesen ET, Jacobsen C, Jakobsen J. UVB exposure stimulates production of vitamin D3 in selected microalgae. Algal Res. 2021 Nov;59:102472. doi: 10.1016/j.algal.2021.102472.

Rezaie A, Leite GG, Melmed GY, Mathur R, Villanueva Millan MJ, Parodi G. ultraviolet light effectively reduces bacteria and viruses, including corona virus. PLOS ONE. 2020;15(7):e0236199. doi: 10.1371/journal.pone.0236199, PMID 32673355.

Alfredsson L, Armstrong BK, Butterfield DA, Chowdhury R, DE Gruijl FR, Feelisch M. Insufficient sun exposure has become a real public health problem. Int J Environ Res Public Health. 2020;17(14):1-15. doi: 10.3390/ijerph17145014, PMID 32668607.

Iannacone MR, Hughes MC, Green AC. Effects of sunscreen on skin cancer and photoaging. Photodermatol Photoimmunol Photomed. 2014;30(2-3):55-61. doi: 10.1111/phpp.12109, PMID 24417448.

Reichrath J. The challenge resulting from positive and negative effects of sunlight: how much solar UV exposure is appropriate to balance between risks of vitamin D deficiency and skin cancer. Prog Biophys Mol Biol. 2006;92(1):9-16. doi: 10.1016/j.pbiomolbio.2006.02.010.

Adiguna SP, Panggabean JA, Swasono RT, Rahmawati SI, Izzati F, Bayu A. Evaluations of andrographolide rich fractions of Andrographis paniculata with enhanced potential antioxidant anticancer antihypertensive and anti-inflammatory activities. Plants (Basel). 2023;12(6):1-14. doi: 10.3390/plants12061220, PMID 36986909.

Intharuksa A, Arunotayanun W, Yooin W, Sirisa Ard P. A comprehensive review of Andrographis paniculata (Burm. f.) nees and its constituents as potential lead compounds for COVID-19 drug discovery. Molecules. 2022;27(14):1-34. doi: 10.3390/molecules27144479, PMID 35889352.

XU C, Chou GX, Wang ZT. A new diterpene from the leaves of Andrographis paniculata nees. Fitoterapia. 2010;81(6):610-3. doi: 10.1016/j.fitote.2010.03.003, PMID 20230876.

Bhatnagar A. A comprehensive review of kalmeghs biological activities (Andrographis paniculata). Int J Pharm Pharm Sci. 2023;15(2):1-7. doi: 10.22159/ijpps.2023v15i2.46705.

Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Moh Qrimida AM, Allzrag AM. Andrographis paniculata (Burm. f.) wall ex nees: an updated review of phytochemistry antimicrobial pharmacology and clinical safety and efficacy. Life (Basel). 2021;11(4):1-39. doi: 10.3390/life11040348, PMID 33923529.

Rajanna M, Bharathi B, Shivakumar BR, Deepak M, Prashanth DS, Prabakaran D. Immunomodulatory effects of Andrographis paniculata extract in healthy adults an open label study. J Ayurveda Integr Med. 2021;12(3):529-34. doi: 10.1016/j.jaim.2021.06.004, PMID 34376353.

Fardiyah Q, Ersam T, Suyanta, Slamet A, Suprapto, Kurniawan F. New potential and characterization of Andrographis paniculata L. ness plant extracts as photoprotective agent. Arab J Chem. 2020;13(12):8888-97. doi: 10.1016/j.arabjc.2020.10.015.

Wang ML, Zhong QY, Lin BQ, Liu YH, Huang YF, Chen Y. Andrographolide sodium bisulfate attenuates UV induced photo damage by activating the keap1/Nrf2 pathway and downregulating the NF κB pathway in HaCaT keratinocytes. Int J Mol Med. 2020;45(2):343-52. doi: 10.3892/ijmm.2019.4415, PMID 31789424.

Zhong QY, Luo QH, Lin B, Lin BQ, SU ZR, Zhan JY. Protective effects of andrographolide sodium bisulfate on UV-induced skin carcinogenesis in mice model. Eur J Pharm Sci. 2022;176:106232. doi: 10.1016/j.ejps.2022.106232, PMID 35710077.

D Orazio J, Jarrett S, Amaro Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222-48. doi: 10.3390/ijms140612222, PMID 23749111.

Ozogul Y, Karsli GT, Durmus M, Yazgan H, Oztop HM, McClements DJ. Recent developments in industrial applications of nanoemulsions. Adv Colloid Interface Sci. 2022;304:102685. doi: 10.1016/j.cis.2022.102685, PMID 35504214.

Shaker DS, Ishak RA, Ghoneim A, Elhuoni MA. Nanoemulsion: a review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci Pharm. 2019;87(3):1-34. doi: 10.3390/scipharm87030017.

Kaur CD, Saraf S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Res. 2010;2(1):22-5. doi: 10.4103/0974-8490.60586, PMID 21808534.

Yadav NP, Meher JG, Pandey N, Luqman S, Yadav KS, Chanda D. Enrichment development and assessment of Indian basil oil based antiseptic cream formulation utilizing hydrophilic-lipophilic balance approach. Bio Med Res Int. 2013;2013:410686. doi: 10.1155/2013/410686, PMID 23984361.

CIR. Safety cosmetics. Saf Assessment Polysorbates Used Cosmet Cosmet Ingredient Rev. 2015.

Syukri Y, Fitriani H, Pandapotan H, Nugroho BH. Formulation characterization and stability of ibuprofen-loaded self nano emulsifying drug delivery system (SNEDDS). Indonesian J Pharm. 2019;30(2):105-13. doi: 10.14499/indonesianjpharm30iss2pp105-113.

Hairunisa I, Da’i M, Wikantyasning ER, Gilang Mahaputra AR, Normaidah N, Abu Bakar MF. Validated UV-vis spectrophotometric determination of andrographolide in herbal nano preparation. Asian J Chem. 2019;31(9):1985-8. doi: 10.14233/ajchem.2019.21951.

Miksusanti M, Elsa Fitria Apriani EF, Bama Bihurinin AH. Optimization of tween 80 and PEG-400 concentration in Indonesian virgin coconut oil nanoemulsion as antibacterial against staphylococcus aureus. Sains Malays. 2023;52(4):1259-72. doi: 10.17576/JSM-2023-5204-17.

Apriani EF. Effect of stirring speed and stirring time on characterization of clindamycin HCl ethosomal and ICH Q1A (R2) stability test. Farmacia. 2023;71(5):956-65. doi: 10.31925/farmacia.2023.5.10.

Drais HK, Hussein AA. Formulation and characterization of carvedilol nanoemulsion oral liquid dosage form. Int J Pharm Pharm Sci. 2015;7(12):209-16.

Apriani EF, Miksusanti M, Fransiska N. Formulation and optimization peel off gel mask with polyvinyl alcohol and gelatin based using factorial design from banana peel flour (Musa paradisiaca L) as antioxidant. Indonesian J Pharm. 2022;32(2):261-8. doi: 10.22146/ijp.3408.

Neha SM, Swamy MV, Shivappa NN. Swamy VS and pharm m. formulation and evaluation of nanoemulsion for topical application. J Drug Deliv Ther. 2019;9(4):370-5. doi: 10.22270/jddt.v9i4.

Fitria Apriani E, Shiyan S, Hardestyariki D, Starlista V, Febriani M. Factorial design for the optimization of clindamycin HCl-loaded ethosome with various concentrations of phospholipon 90g and ethanol. Res J Pharm Technol. 2023;16(4):1561-8. doi: 10.52711/0974-360X.2023.00255.

Mardiyanto M. The role of temperature and pH in the synthesis of silver nanoparticles using Areca catechu L. seed extract as bioreductor. Farmacia. 2023;71(2):244-53. doi: 10.31925/farmacia.2023.2.3.

Apriani EF. Optimization of green synthesis of silver nanoparticles from areca catechu L. Seed extract with variations of silver nitrate and extract concentrations using simplex lattice design method. Farmacia. 2022;70(5):917-24. doi: 10.31925/farmacia.2022.5.18.

Mardiyanto M, Apriani EF, Hafizhaldi Alfarizi MH. Formulation and in vitro antibacterial activity of gel containing ethanolic extract of purple sweet potato leaves (Ipomoea batatas (l.) loaded poly lactic co-glycolic acid submicroparticles against staphylococcus aureus. Res J Pharm Technol. 2022;15(8):3599-605. doi: 10.52711/0974-360X.2022.00603.

Sopyan I, Permata RD, Gozali D, Syah IS. Formulation of lotion from black tea extract (Camellia sinensis Linnaeus) as sunscreen. Int J App Pharm. 2019;11(1):205-9. doi: 10.22159/ijap.2019v11i1.29564.

Sudirman S, Herpandi SE, Safitri EF, Apriani EF, Taqwa FH. Total polyphenol and flavonoid contents and antioxidant activities of water lettuce (Pistia stratiotes) leave extracts. Food Res. 2022;6(4):205-10. doi: 10.26656/fr.2017.6(4).484.

Laxmi M, Bhardwaj A, Mehta S, Mehta A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif Cells Nanomed Biotechnol. 2015;43(5):334-44. doi: 10.3109/21691401.2014.887018, PMID 24641773.

Miksusanti M, Fitria Apriani EF, Aprida N. Formulation and optimization peel off gel mask with polyvinyl alcohol and whey protein-based using factorial design from ethanolic extract of mangosteen peel (Garcinia mangostana) as antioxidant. Res J Pharm Technol. 2023;16(2):870-8. doi: 10.52711/0974-360X.2023.00148.

Figueiredo Filho DB, Silva Junior JA, Rocha EC. What is R2 all about. Leviathan (Sao Paulo). 2011;3(3):60. doi: 10.11606/issn.2237-4485.lev.2011.132282.

Rowe RC, Sheskey PJ, Queen ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press and American Pharmacists Assosiation; 2009.

Kuroda K, Miyamura K, Satria H, Takada K, Ninomiya K, Takahashi K. Hydrolysis of cellulose using an acidic and hydrophobic ionic liquid and subsequent separation of glucose aqueous solution from the ionic liquid and 5-(hydroxymethyl) furfural. ACS Sustainable Chem Eng. 2016;4(6):3352-6. doi: 10.1021/acssuschemeng.6b00420.

Luczak J, Latowska A, Hupka J. Micelle formation of tween 20 nonionic surfactant in imidazolium ionic liquids. Colloids Surf A Physicochem Eng Aspects. 2015;471:26-37. doi: 10.1016/j.colsurfa.2015.02.008.

Bhattacharjee S. DLS and zeta potential-What they are and what they are not? J Control Release. 2016;235:337-51. doi: 10.1016/j.jconrel.2016.06.017, PMID 27297779.

Xie L, LI Q, Liao Y, Huang Z, Liu Y, Liu C. Toxicity analysis of mesoporous polydopamine on intestinal tissue and microflora. Molecules. 2022;27(19):6461. doi: 10.3390/molecules27196461, PMID 36234997.

Albassam M, Aslam M. Testing internal quality control of clinical laboratory data using paired t-test under uncertainty. Bio Med Res Int. 2021;2021:5527845. doi: 10.1155/2021/5527845, PMID 34527738.

Deryabin DG, Efremova LV, Vasilchenko AS, Saidakova EV, Sizova EA, Troshin PA. A zeta potential value determines the aggregates size of penta substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells. J Nanobiotechnol. 2015;13(1):1-13. doi: 10.1186/s12951-015-0112-6.

Geoffrey K, Mwangi AN, Maru SM. Sunscreen products: rationale for use formulation development and regulatory considerations. Saudi Pharm J. 2019;27(7):1009-18. doi: 10.1016/j.jsps.2019.08.003, PMID 31997908.

Jumina J, Siswanta D, Zulkarnain AK, Triono S, Priatmoko P, Yuanita E. Development of C-arylcalix[4]resorcinarenes and C-arylcalix[4]pyrogallolarenes as antioxidant and UV-B protector. Indones J Chem. 2019;19(2):273-84. doi: 10.22146/ijc.26868.

Arianto A, Cindy C. Preparation and evaluation of sunflower oil nanoemulsion as a sunscreen. Open Access Maced J Med Sci. 2019;7(22):3757-61. doi: 10.3889/oamjms.2019.497, PMID 32127969.

Liu T, Gao Z, Zhong W, FU F, LI G, Guo J. Preparation characterization and antioxidant activity of nanoemulsions incorporating lemon essential oil. Antioxidants (Basel). 2022;11(4):1-13. doi: 10.3390/antiox11040650, PMID 35453335.

Avetisyan A, Markosian A, Petrosyan M, Sahakyan N, Babayan A, Aloyan S. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement Altern Med. 2017;17(1):60. doi: 10.1186/s12906-017-1587-5, PMID 28103929.

Kamelnia E, Mohebbati R, Kamelnia R, El Seedi HR, Boskabady MH. Anti-inflammatory immunomodulatory and antioxidant effects of Ocimum basilicum L. and its main constituents: a review. Iran J Basic Med Sci. 2023;26(6):617-27. doi: 10.22038/IJBMS.2023.67466.14783.

Messire G, Serreau R, Berteina Raboin S. Antioxidant effects of catechins (EGCG) andrographolide and curcuminoids compounds for skin protection cosmetics and dermatological uses: an update. Antioxidants (Basel). 2023;12(7):1-18. doi: 10.3390/antiox12071317, PMID 37507856.

Published

07-11-2024

How to Cite

APRIANI, E. F., MIKSUSANTI, M., AGUSTIARINI, V. ., FRANSISKA, O. L., & HARDESTYARIKI, D. . (2024). SAMBILOTO LEAF NANOEMULSION AS A PHOTOPROTECTIVE AGENT: OPTIMIZATION OF TWEEN 20 AND PEG-400 CONCENTRATION USING THE REGULAR TWO-LEVEL FACTORIAL DESIGN. International Journal of Applied Pharmaceutics, 16(6), 169–175. https://doi.org/10.22159/ijap.2024v16i6.52083

Issue

Section

Original Article(s)