THE EFFECT OF DIFFERENT CONCENTRATION OF β-CYCLODEXTRIN AND GUM ARABIC ON THE MICROENCAPSULATED MORINGA SEED OIL BY USING THE SPRAY DRYING METHOD

Authors

  • NUUR AANISAH Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Indonesia
  • YAYUK ISTIYAS Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Indonesia
  • NURLINA IBRAHIM Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Indonesia
  • MUHAMMAD SULAIMAN ZUBAIR Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Indonesia https://orcid.org/0000-0002-3065-0480
  • EVI SULASTRI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52164

Keywords:

Moringa seed oil, Microencapsulation, β-cyclodextrin, Gum arabic, Physico-chemical characteristics

Abstract

Objective: The aim of this study was to determine the impact of various concentrations of β-cyclodextrin and gum arabic on the characteristics of Microencapsulated Moringa Seed Oil (MSO).

Methods: The soxhlation method was used to extract MSO. The resulting MSO was microencapsulated employing a spray dryer

The variations in of β-cyclodextrin:gum arabic concentration were made to determine the coating material suitable for this formula. The characterization includes organoleptic tests, FTIR, encapsulation efficiency, morphology, particle size and moisture content of microencapsulated MSO.

Results: The results obtained from the particle size for F1, F2, F3, F4, and F5 were 5.42; 4.29; 4.23; 4.34; 5.15 µm, respectively. Then the percentage of encapsulation efficiency obtained was 74.42 ± 0.13; 78.81 ± 0.12; 82.27 ± 0.07; 93.94 ± 0.09; 71.50 ± 0.11, respectively. The IR spectra shows no chemical interactions that occurred in the formulation of microencapsulated MSO.

Conclusion: In conclusion, microencapsulated MSO formulated with β-cyclodextrin (40% w/v) was recommended as the most optimal formula with a smaller particle size (4.34 µm) among others and exhibited the highest microencapsulation efficiency.

Downloads

Download data is not yet available.

References

Gharsallah K, Rezig L, Msaada K, Chalh A, Soltani T. Chemical composition and profile characterization of Moringa oleifera seed oil. S Afr J Bot. 2021;137:475-82.

Iranloye Y, Fapojuwo O, Abioye V, Olaniran A. Potentials of moringa (Moringa oleifera) seed oil in enhancing the nutritional quality and stability of soybean oil. Agrosearch. 2020;20(1):59-68.

Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int J Mol Sci. 2016;17(12):2141.

Elsayed FI, Elgendey F, Waheed RM, El-Shemy MA. Protective Effect of Moringa oleifera Seed Extract on Cisplatin Induced Nephrotoxicity in Rats. Int J Pharm Pharm Sci. 2021;13(5).

Anwar F, Bhanger M. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J Agric Food Chem. 2003;51(22):6558-63.

Gutiérrez‐Luna K, Ansorena D, Astiasarán I. Fatty acid profile, sterols, and squalene content comparison between two conventional (olive oil and linseed oil) and three non‐conventional vegetable oils (echium oil, hempseed oil, and moringa oil). J Food Sci. 2022;87(4):1489-99.

Bassey K, Mabowe M, Mothibe M, Witika BA. Chemical characterization and nutritional markers of South African Moringa oleifera seed oils. Molecules. 2022;27(18):5749.

Aly AA, Maraei RW, Ali HG. Fatty acids profile and chemical composition of Egyptian Moringa oleifera seed oils. J Am Oil Chem Soc. 2016;93(3):397-404.

Guzmán-Albores JM, Bojórquez-Velázquez E, De León-Rodríguez A, de Jesús Calva-Cruz O, de la Rosa APB, Ruíz-Valdiviezo VM. Comparison of Moringa oleifera oils extracted with supercritical fluids and hexane and characterization of seed storage proteins in defatted flour. Food Biosci. 2021;40:100830.

Tsaknis J, Lalas S, Gergis V, Dourtoglou V, Spiliotis V. Characterization of Moringa oleifera variety Mbololo seed oil of Kenya. J Agric Food Chem. 1999;47(11):4495-9.

Ogbunugafor H, Eneh F, Ozumba A, Igwo-Ezikpe M, Okpuzor J, Igwilo I, et al. Physico-chemical and antioxidant properties of Moringa oleifera seed oil. Pak J Nutr. 2011;10(5):409-14.

Choe E, Min DB. Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci Food Saf. 2006;5(4):169-86.

Alehosseini E, Jafari SM. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci Technol. 2019;91:116-28.

Yekdane N, Goli SAH. Effect of pomegranate juice on characteristics and oxidative stability of microencapsulated pomegranate seed oil using spray drying. Food Bioproc Tech. 2019;12:1614-25.

de Abreu Figueiredo J, de Paula Silva CR, Oliveira MFS, Norcino LB, Campelo PH, Botrel DA, Borges SV. Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends Food Sci Technol. 2022;120:274-87.

Reineccius G, Patil S, Anantharamkrishnan V. Encapsulation of orange oil using fluidized bed granulation. Molecules. 2022;27(6):1854.

Mankar S, Shaikh SB. Microencapsulation: is an advance Technique of Drug formulation for Novel Drug Delivery System. Research Journal of Science and Technology. 2020;12(3):201-10.

de Araújo JSF, de Souza EL, Oliveira JR, Gomes ACA, Kotzebue LRV, da Silva Agostini DL, et al. Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. Int J Biol Macromol. 2020;143:991-9.

Huang J, Wang Q, Chu L, Xia Q. Liposome-chitosan hydrogel bead delivery system for the encapsulation of linseed oil and quercetin: Preparation and in vitro characterization studies. Lwt. 2020;117:108615.

Premi M, Sharma H. Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. Int J Biol Macromol. 2017;105:1232-40.

Wang Y, Jiang Z-T, Li R. Complexation and molecular microcapsules of Litsea cubeba essential oil with β-cyclodextrin and its derivatives. Eur Food Res Technol. 2009;228:865-73.

Kringel DH, Antunes MD, Klein B, Crizel RL, Wagner R, de Oliveira RP, et al. Production, characterization, and stability of orange or eucalyptus essential oil/β‐cyclodextrin inclusion complex. J Food Sci. 2017;82(11):2598-605.

Su Z, Qin Y, Zhang K, Bi Y, Kong F. Inclusion complex of exocarpium Citri grandis essential oil with β‐cyclodextrin: characterization, stability, and antioxidant activity. J Food Sci. 2019;84(6):1592-9.

Surini S, Azzahrah FU, Ramadon D. Microencapsulation of grape seed oil (Vitis vinifera L.) with gum arabic as a coating polymer by crosslinking emulsification method. Int J Appl Pharm. 2018;10(6):194-8.

Laureanti EJG, Paiva TS, de Matos Jorge LM, Jorge RMM. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques. Int J Biol Macromol. 2023;253:126969.

Chew SC, Tan CP, Nyam KL. Microencapsulation of refined kenaf (Hibiscus cannabinus L.) seed oil by spray drying using β-cyclodextrin/gum arabic/sodium caseinate. J Food Eng. 2018;237:78-85.

Athikomkulchai S, Tunit P, Tadtong S, Jantrawut P, Sommano SR, Chittasupho C. Moringa oleifera seed oil formulation physical stability and chemical constituents for enhancing skin hydration and antioxidant activity. Cosmetics. 2020;8(1):2.

Carneiro HC, Tonon RV, Grosso CR, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng. 2013;115(4):443-51.

George TT, Oyenihi AB, Rautenbach F, Obilana AO. Characterization of Moringa oleifera leaf powder extract encapsulated in maltodextrin and/or gum arabic coatings. Foods. 2021;10(12):3044.

Mohd-Setapar S, Nian-Yian L, Mohd-Sharif N. Extraction of rubber (Hevea brasiliensis) seed oil using soxhlet method. Malays J Fundam Appl Sci. 2014;10(1).

Xiang S, Yao X, Zhang W, Zhang K, Fang Y, Nishinari K, et al. Gum Arabic-stabilized conjugated linoleic acid emulsions: Emulsion properties in relation to interfacial adsorption behaviors. Food Hydrocoll. 2015;48:110-6.

Bouyer E, Mekhloufi G, Rosilio V, Grossiord J-L, Agnely F. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm. 2012;436(1-2):359-78.

García-Segovia P, Barreto-Palacios V, Bretón J, Martínez-Monzó J. Microencapsulation of essential oils using β-cyclodextrin: Applications in gastronomy. Journal of culinary science & technology. 2011;9(3):150-7.

Ayala-Zavala JF, Soto-Valdez H, González-León A, Alvarez-Parrilla E, Martin-Belloso O, González-Aguilar GA. Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2008;60:359-68.

Sarkar S, Gupta S, Variyar PS, Sharma A, Singhal RS. Hydrophobic derivatives of guar gum hydrolyzate and gum Arabic as matrices for microencapsulation of mint oil. Carbohydr Polym. 2013;95(1):177-82.

Abarca RL, Rodríguez FJ, Guarda A, Galotto MJ, Bruna JE. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food chem. 2016;196:968-75.

Reineccius GA. The spray drying of food flavors. Dry Technol. 2004;22(6):1289-324.

Zhao H, Fei X, Cao L, Zhao S, Zhou J. Changes in microcapsules under heating: the effect of particle size on thermal stability and breakability. J Mater Sci. 2020;55(9):3902-11.

Zhang L, Wu K, Sun G, Liu R, Luo J. Investigation of particle size effect on the performance of micro/nano capsules and composite coatings. Colloids Surf A Physicochem Eng Asp. 2023;675:132020.

Zhao R, Sun J, Torley P, Wang D, Niu S. Measurement of particle diameter of Lactobacillus acidophilus microcapsule by spray drying and analysis on its microstructure. World J Microbiol Biotechnol. 2008;24:1349-54.

Tonon RV, Grosso CR, Hubinger MD. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res Int. 2011;44(1):282-9.

Parambil A, Maanvizhi S, Kuttalingam A, Chitra V. Spray-Dried Chitosan Microspheres for Sustained Delivery of Trifluoperazine Hydrochloride: Formulation and In Vitro Evaluation. Int J App Pharm. 2023;15(3):200-7.

Luján-Medina GA, Ventura J, Ascacio-Valdés JA, Cerqueira M, Villa DB, Contreras-Esquivel JC, et al. Microencapsulation of ellagic acid from pomegranate husk and karaya gum by spray drying. Int J Pharm Pharm Sci. 2015;7(13).

Gong L, Li T, Chen F, Duan X, Yuan Y, Zhang D, Jiang Y. An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization. Food Chem. 2016;196:324-30.

Minemoto Y, Hakamata K, Adachi S, Matsuno R. Oxidation of linoleic acid encapsulated with gum arabic or maltodextrin by spray-drying. J Microencapsul. 2002;19(2):181-9.

Vibhute S, Kasture V, Kasture S, Kendre P, Rupnar S, Pande V. Design and characterization of Moringa oleifera seed oil impregnated anti-inflammatory topical micro-dispersion. Pharm Lett. 2015;7:7-16.

Fu X, Su J, Hou L, Zhu P, Hou Y, Zhang K, et al. Physicochemical and thermal characteristics of Moringa oleifera seed oil. Adv Compos Hybrid Mater. 2021;4:685-95.

Magalhães ERB, de Menezes NNF, Silva FL, Garrido JWA, Sousa MAdSB, dos Santos ES. Effect of oil extraction on the composition, structure, and coagulant effect of Moringa oleifera seeds. J Clean Prod. 2021;279:123902.

Published

04-12-2024

How to Cite

AANISAH, N., ISTIYAS, Y., IBRAHIM, N., ZUBAIR, M. S., & SULASTRI, E. (2024). THE EFFECT OF DIFFERENT CONCENTRATION OF β-CYCLODEXTRIN AND GUM ARABIC ON THE MICROENCAPSULATED MORINGA SEED OIL BY USING THE SPRAY DRYING METHOD. International Journal of Applied Pharmaceutics, 17(1). https://doi.org/10.22159/ijap.2025v17i1.52164

Issue

Section

Original Article(s)