AN OVERVIEW ON BIODEGRADABLE POLYMER: ENVIRONMENTAL PROTECTION AND THE MAINTENANCE OF PHYSICAL HEALTH
DOI:
https://doi.org/10.22159/ijhs.2024v12.51976Keywords:
Biodegradable composites, Biofiber, Biopolymer, Polymer blends, Ocular drug deliveryAbstract
Biodegradable polymer materials (known as biocomposites) are widely used for manufacturing of drug delivery technology for controlled and sustained release pattern. The building blocks of plastic materials are polymers, which are constantly being used in an increasing number of applications. Because of this, a lot of researchers are devoting their efforts to creating innovative polymer composites using components that exist naturally as well as changing conventional materials to make them more user-friendly. The utilisation of biopolymers and biofibers as raw materials is done with consideration for the environment. These days, scientists are adding tiny amounts of a novel type of substance called a nanofiller to a variety of biopolymer-based composites. These nanofillers will function as additives, improving the mechanical, thermal, flame-retardant, and water-absorption behaviour of the nano composite materials while preserving their ideal density. An overview of the many biodegradable polymers that are now in use, their characteristics, and recent advancements in their synthesis and uses are provided in the review that follows.
References
Kolybaba, M., et al. "Biodegradable polymers: past, present, and future." ASABE/CSBE north central intersectional meeting. American Society of Agricultural and Biological Engineers, 2006.
Doppalapudi, Sindhu, et al. "Biodegradable polymers—an overview." Polymers for Advanced Technologies 25.5 (2014): 427-435.
Kotwal, V. B., et al. "Biodegradable polymers: Which, when and why." Indian J. Pharm. Sci 69.5 (2007): 616-625.
Marin, Edgar, Maria Isabel Briceño, and Catherina Caballero-George. "Critical evaluation of biodegradable polymers used in nanodrugs." International journal of nanomedicine (2013): 3071-3091.
Vroman, Isabelle, and Lan Tighzert. "Biodegradable polymers." Materials 2.2 (2009): 307-344.
Baidurah, S. (2022, November 15). Methods of Analyses for Biodegradable Polymers: A Review. Polymers, 14(22), 4928. https://doi.org/10.3390/polym14224928
Lu, D. R., C. M. Xiao, and S. J. Xu. "Starch-based completely biodegradable polymer materials." Express polymer letters 3.6 (2009): 366-375.
Nair, Lakshmi S., and Cato T. Laurencin. "Biodegradable polymers as biomaterials." Progress in polymer science 32.8-9 (2007): 762-798.
Čolnik, Maja, et al. "Biodegradable polymers, current trends of research and their applications, a review." Chemical industry and chemical engineering quarterly 26.4 (2020): 401-418.
Laycock, Bronwyn, et al. "Lifetime prediction of biodegradable polymers." Progress in Polymer Science 71 (2017): 144-189.
Siracusa, Valentina, et al. "Biodegradable polymers for food packaging: a review." Trends in food science & technology 19.12 (2008): 634-643.
Mangaraj, S., et al. "Application of biodegradable polymers in food packaging industry: A comprehensive review." Journal of Packaging Technology and Research 3 (2019): 77-96.
Khalili, S., Khorasani, S., Razavi, S., Hashemibeni,B., and Tamayol, A. Nanofi brous scaffolds with biomimetic composition for skin regeneration, Applied Biochemistry and Biotechnology 2019; 187 (4): 1193– 1203 DOI: 10.1007/s12010-018-2871-7
Tawade, Pratik, Nimisha Tondapurkar, and Akash Jangale. "Biodegradable and biocompatible synthetic polymers for applications in bone and muscle tissue engineering." Journal of Medical Science 91.3 (2022): e712-e712.
Roy, Soumili, Kulwinder Singh, and Abhishek Kumar. "Biodegradable polymer nanocomposites for active food packaging." E3S Web of Conferences. Vol. 509. EDP Sciences, 2024.
Tsung, Ta-Hsin, et al. "Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases." International Journal of Molecular Sciences 24.16 (2023): 12976.
Jagadeesh, Praveenkumara, et al. "Influence of nanofillers on biodegradable composites: A comprehensive review." Polymer composites 42.11 (2021): 5691-5711.
Souza, Victor Gomes Lauriano, and Ana Luisa Fernando. "Nanoparticles in food packaging: Biodegradability and potential migration to food—A review." Food Packaging and Shelf Life 8 (2016): 63-70.
Bari, Sarang S., Aniruddha Chatterjee, and Satyendra Mishra. "Biodegradable polymer nanocomposites: An overview." Polymer Reviews 56.2 (2016): 287-328.
Lavik, Erin, M. H. Kuehn, and Y. H. Kwon. "Novel drug delivery systems for glaucoma." Eye 25.5 (2011): 578-586.
Muñoz-Fernández, Santiago, and Emilio Martín-Mola. "Uveitis." Best Practice & Research Clinical Rheumatology 20.3 (2006): 487-505.
Khalil, H. P. S. A., Rus Mahayuni, A. R., Bhat, I. U. H., Rudi, D., Almulali, M. Z., & Abdullah, C. K. (2012, October 17). CHARACTERIZATION OF VARIOUS ORGANIC WASTE NANOFILLERS OBTAINED FROM OIL PALM ASH. BioResources, 7(4). https://doi.org/10.15376/biores.7.4.5771-5780
Hemath, M., Mavinkere Rangappa, S., Kushvaha, V., Dhakal, H. N., & Siengchin, S. (2020, July 14). A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polymer Composites, 41(10), 3940–3965. https://doi.org/10.1002/pc.25703
Yang, W., Fortunati, E., Dominici, F., Giovanale, G., Mazzaglia, A., Balestra, G., Kenny, J., & Puglia, D. (2016, June). Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. European Polymer Journal, 79, 1–12. https://doi.org/10.1016/j.eurpolymj.2016.04.003
Craig, Jennifer P., et al. "TFOS DEWS II definition and classification report." The ocular surface 15.3 (2017): 276-283.
Modi, G., Pillay, V., & Choonara, Y. E. (2010, January). Advances in the treatment of neurodegenerative disorders employing nanotechnology. Annals of the New York Academy of Sciences, 1184(1), 154–172. https://doi.org/10.1111/j.1749-6632.2009.05108.x
Godin, B., Sakamoto, J. H., Serda, R. E., Grattoni, A., Bouamrani, A., & Ferrari, M. (2010, May). Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends in Pharmacological Sciences, 31(5), 199–205. https://doi.org/10.1016/j.tips.2010.01.003
Friess, W. (1998, March). Collagen – biomaterial for drug delivery1Dedicated to Professor Dr. Eberhard Nürnberg, Friedrich-Alexander-Universität Erlangen-Nürnberg, on the occasion of his 70th birthday.1. European Journal of Pharmaceutics and Biopharmaceutics, 45(2), 113–136. https://doi.org/10.1016/s0939-6411(98)00017-4
Gelse, K. (2003, November 28). Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), 1531–1546. https://doi.org/10.1016/j.addr.2003.08.002
Khan, W., Muthupandian, S., Farah, S., Kumar, N., & Domb, A. J. (2011, November 3). Biodegradable Polymers Derived From Amino Acids. Macromolecular Bioscience, 11(12), 1625–1636. https://doi.org/10.1002/mabi.201100324
Lee, S. Y. (1996, January 5). Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 49(1), 1–14. http://dx.doi.org/10.1002/(sici)1097-0290(19960105)49:1<1::aid-bit1>3.3.co;2-1
Avella, M., Errico, M., Laurienzo, P., Martuscelli, E., Raimo, M., & Rimedio, R. (2000, May). Preparation and characterisation of compatibilised polycaprolactone/starch composites. Polymer, 41(10), 3875–3881. https://doi.org/10.1016/s0032-3861(99)00663-1
Griffin G. J. L.: Biodegradable synthetic resin sheet material containing starch and a fatty material. U.S. Patent: 4016117, USA (1977).
Bikiaris D., Prinos J., Koutsopoulos K., Vouroutzis N., Pavlidou E., Frangis N., Panayiotou C.: LDPE/ plasticized starch blends containing PE-g-MA copolymer as compatibilizer. Polymer Degradation and Stability, 59, 287–291 (1998).
Mani R., Bhattacharya M.: Properties of injection moulded blends of starch and modified biodegradable polyesters. European Polymer Journal, 37, 515–526 (2001).
ASTM F1927 (2014) Standard test method for determination of oxygen gas transmission rate, permeability and permeance at controlled relative humidity through barrier materials using a coulometric detector, 2007. ASTM International, West Conshohocken.
Krasnova I, Dukalska L, Seglina D, Juhnevica K, Sne E, Karklina D (2012) Effect of passive modified atmosphere in different packaging materials on fresh-cut mixed fruit salad quality
Krasnova I, Dukalska L, Seglina D, Juhnevica K, Sne E, Karklina D (2012) Effect of passive modified atmosphere in different packaging materials on fresh-cut mixed fruit salad quality.
Averous L, Pollet E (2012) Environmental silicate nano-biocomposites. Springer, London
Mangaraj S, Goswami TK, Panda DK (2015) Modeling of gas transmission properties of polymeric films used for MA Packaging of fruits. J Food Sci Technol 52(9):5456–5469
H. Rosenheim, I. De, S. Hyvedemm, Bioplastics market data 2017, https://docs.european-bioplastics.org/publications/market_data/2017/Report_Bioplastics_Market_Dat a_2017.pdf (accessed 9 June 2019)
S. Farah, D.G. Anderson, R. Langer, Adv. Drug Deliv. Rev. 107 (2016) 367–392
Kruijf ND, Beest MV, Rijk R, Sipilainen-Malm T, Losada PP, Meulenaer BD (2002) Active and intelligent packaging: applications and regulatory aspects. Food Addit Contam 19(suppl 1):144–162
Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Intl 39(5):639–644
W. Yang, E. Fortunati, F. Dominici, G. Giovanale, A. Mazzaglia, G. M. Balestra, J. M. Kenny, and D. Puglia, Eur Polym J 79, 1 (2016)
Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen,J.H.;etal. Globalcausesofblindnessanddistancevisionimpairment1990–2020: Asystematicreviewandmeta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234
Lavik, E.; Kuehn, M.H.; Kwon, Y.H. Novel drug delivery systems for glaucoma. Eye 2011, 25, 578–586.
Patel, H.Y.; Danesh-Meyer, H.V. Incidence and management of cataract after glaucoma surgery. Curr. Opin. Ophthalmol. 2013, 24, 15–20
Wu, W.; He, Z.; Zhang, Z.; Yu, X.; Song, Z.; Li, X. Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model. Int. J. Pharm. 2016, 513, 238–246.
Gonzalez-Pizarro, R.; Carvajal-Vidal, P.; Bellowa, L.H.; Calpena, A.C.; Espina, M.; García, M.L. In-situ forming gels containing fluorometholone-loaded polymeric nanoparticles for ocular inflammatory conditions. Colloids Surf. B Biointerfaces 2019, 175, 365–374.
O’Neil, E.C.; Henderson, M.; Massaro-Giordano, M.; Bunya, V.Y. Advances in dry eye disease treatment. Curr. Opin. Ophthalmol. 2019, 30, 166–178.
Messmer, E.M. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch. Arztebl. Int. 2015, 112, 71–81.
Beldjilali-Labro, M., Garcia, A., Farhat, F., Bedoui, F.,Grosset, J-M., Dufresne, M., and Legallais, C. Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges, Materials 2018;11: 1–49 DOI: 10.3390/ma11071116
Sensini, A., Massafra, G., Gotti, C., Zucchelli, A., and Cristofolini, L. Tissue engineering for the insertions of tendons and ligaments: an overview of electrospun biomaterials and structures, Frontiers in Bioengineering and Biotechnology 2021; 9: 1–23 https:// doi.org/10.3389/fbioe.2021.645544
Badylak, S. The extracellular matrix as a scaffold for tissue reconstruction, Seminars in Cell and Developmental Biology 2002;13 (5): 377–83 DOI:10.1016/ s1084952102000940
Martina, M. and Hutmacher D. Biodegradable poly-mers applied in tissue engineering research: A review, Polymer International 2007; 56 (2): 145–57 https:// doi.org/10.1002/pi.2108
Published
How to Cite
Issue
Section
Copyright (c) 2024 Tanmay Mohanta, Shubhra Tarafdar, Shivani Raj
This work is licensed under a Creative Commons Attribution 4.0 International License.